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The modular group

Γ := SL2(Z) acts on H := {z ∈ C : Im(z) > 0} by

(
a b

c d

)
z =

az + b

cz + d

A fundamental domain for this action is

F := {z ∈ H : −1/2 ≤ Re(z) ≤ 1/2, |z | ≥ 1}
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Modular forms on Γ

A modular form of integer weight k for Γ is a holomorphic function
f : H → C with

f

(
az + b

cz + d

)
= (cz + d)k f (z), z ∈ H,

(
a b

c d

)
∈ Γ

We can extend f to a point at ∞ and write a Fourier series for f
at ∞ with q := e2πiz :

f (z) =
∞∑

n=0

a(n)qn



Eisenstein series
For even weight k ≥ 4,

Gk(z) :=
∑

c,d∈Z
(c,d)6=(0,0)

(cz + d)−k

are modular forms of weight k .
We can normalize so that the constant term in the Fourier
expansion at ∞ is 1:

Ek(z) :=
1

2ζ(k)
Gk(z) = 1− 2k

Bk

∞∑

n=1

σk−1(n)q
n

More useful for us:

Ek(z) :=
1

2

∑

c,d∈Z
(c,d)=1

(cz + d)−k



Eisenstein series

Eisenstein series can be viewed as arising from the Weierstrass ℘
function, which satisfies

(℘′(z))2 = 4℘(z)3 − 60G4℘(z)− 140G6

This differential equation can be solved recursively to get

℘(z) =
1

z2
+

∞∑

k=1

(2k + 1)G2k+2z
2k



Zeros of Eisenstein series

How many zeros does Ek(z) have in F?

Where are the zeros located in F?



Number of zeros

Valence Formula: If f 6≡ 0 is a modular form of weight k , let
ντ (f ) be the order of f at τ ∈ F . Then

ν∞(f ) +
1

2
νi (f ) +

1

3
νω(f ) +

∑

τ∈F ,τ 6=i ,ω

ντ (f ) =
k

12

Since Ek is holomorphic on H ∪ {∞}, it has ≈ k/12 zeros in F ,
counted with multiplicity.



Location of zeros

Theorem (F.K.C. Rankin, Swinnerton-Dyer)

For all even k ≥ 4, the zeros of Ek(z) are all located on the arc

A := {z = e iθ : π/2 ≤ θ ≤ 2π/3}
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Outline of RSD result

Write k = 12n + s, s ∈ {4, 6, 8, 10, 0, 14}

Sufficient to show Ek(e
iθ) has at least n zeros in (π/2, 2π/3)

Define Fk(θ) := e ikθ/2Ek(e
iθ) =

1

2

∑

c,d∈Z
(c,d)=1

(ce iθ/2 + de−iθ/2)−k

Separate four terms with c2 + d2 = 1. Using Euler’s formula,

Fk(θ) = 2 cos(kθ/2) + R

where R is the remaining sum over terms with c2 + d2 > 1



Outline of RSD result

Bound |R | < 2 on [π/2, 2π/3]

The number of zeros of Fk(θ) (hence Ek(e
iθ)), is at least the

number of zeros of 2 cos(kθ/2) on this interval, by an
Intermediate Value Theorem argument.

The zeros of 2 cos(kθ/2) can be easily counted. There are n

of them.



Interlacing of zeros

Theorem (Nozaki, ’08)

Any zero of Ek(e
iθ) lies between two consecutive zeros of

Ek+12(e
iθ) on π/2 < θ < 2π/3.



Related results on Γ

Kohnen (2004) derives a closed formula for the precise
locations of the zeros of Ek(z) in terms of the Fourier
coefficients

Gekeler (2001) cites computational evidence that the
polynomials

ϕk(x) =
∏

j(z) where Ek (z)=0

j(z)6=0,1728

(x − j(z))

are irreducible with full Galois group Sd where d is the degree
of ϕk(x).



Related results on Γ

Duke and Jenkins (2008) prove that the zeros of the weight k
weakly holomorphic modular forms fk,m(z) = q−m + O(qn+1)
(with k = 12n + s as before) lie on the unit circle. They use a
circle method argument to bound the error term.



Congruence subgroup Γ(2)

Γ(2) :=

{
γ ∈ Γ : γ ≡

(
1 0
0 1

)
(mod 2)

}

Γ(2) has genus 0 and three inequivalent cusps: 0, 1, ∞.

The fundamental domain for Γ(2) is

D := {z ∈ H : −1 ≤ Re(z) ≤ 1, |z − 1/2| ≥ 1/2, |z + 1/2| ≥ 1/2}
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Some odd weight Eisenstein series on Γ(2)

Let χ(d) :=
(−1

d

)
. For k ≥ 1 let

E2k+1,χ(z) :=
1

2

∑

(c,d)≡(0,1) (mod 2)

(c,d)=1

χ(d)(cz + d)−(2k+1)

Then

E2k+1,χ

(
az + b

cz + d

)
= χ(d)(cz + d)−(2k+1)E2k+1,χ(z)

for all z ∈ H and
(
a b
c d

)
∈ Γ(2), and is holomorphic at the cusps.

E2k+1,χ is a modular form of weight 2k + 1 for Γ(2) with character
χ.



Some odd weight Eisenstein series on Γ(2)

Zeros of E2k+1,χ can be studied using the classical Jacobi elliptic
function cn(u), a doubly periodic generalization of cos u which
satisfies

κK

2π
cn

(
2Ku

π

)
=

√
q cos u

1 + q
+

√
q3 cos 3u

1 + q3
+

√
q5 cos 5u

1 + q5
+ · · ·

where K = π
2Θ

2
3(2z) and κ =

Θ2
2(2z)

Θ2
3(2z)

, with

Θ2(z) := q1/8
∑

n∈Z
qn(n+1)/2, Θ3(z) :=

∑

n∈Z
qn

2/2



Some odd weight Eisenstein series on Γ(2)

Using the Taylor series for cos u, we have

κK

2π
cn

(
2Ku

π

)
=

∞∑

k=0

(−1)k

(2k)!

( ∞∑

r=1

(2r − 1)2kq(2r−1)/2

1 + q2r−1

)
u2k

and solving for cn(u), we have

cn(u) =
∞∑

k=0

ie2kπ
2k+1

22k+1(2k)!

G2k+1(2z)

K 2k+1κ
u2k

where

G2k+1(z) := E2k+1,χ |γ0 (z) =
4(−i)2k+1

e2k

∞∑

r=1

(2r − 1)2kq(2r−1)/4

1 + q(2r−1)/2

is the Fourier expansion of E2k+1,χ at the cusp 1.



Another view of cn(u)

An alternative description of cn(u) is found by solving the
differential equation

(
d cn(u)

d u

)2

= (1− cn2(u))
(
1− λ+ λcn2(u)

)

to get

cn(u) = 1− u2

2!
+ (1 + 4λ)

u4

4!
− (1 + 44λ + 16λ2)

u6

6!
+ · · ·

Here λ(z) :=
Θ4

2(z)

Θ4
3(z)

generates the field of meromorphic modular

functions for Γ(2) (analogous to j(z) for Γ). Note that λ(2z) = κ2.



Zeros of G2k+1(z)

Equating coefficients in our two expressions for cn(u) we see that

(−1)k iπ2k+1e2k

22k+1
· G2k+1(2z)

K 2k+1κ
=

(−1)ke2kG2k+1(2z)

Θ4k
3 (2z)G1(2z)

is a polynomial p2k+1(λ) of degree k − 1, having the same zeros as
G2k+1 in D.

This is expected, since this quotient is a modular function that is
holomorphic on H, but now we can easily compute the zeros!



Computational results

k p2k+1(λ) Zeros
2 1 + 4λ −0.25
3 1 + 44λ+ 16λ2 −0.0229,−2.7271
4 1 + 408λ + 912λ2 + 64λ3 −0.0025,−0.4598,−13.778
5 1 + 3688λ + 30764λ2 + 15808λ3 + 256λ4 −.00027,−.1280,−1.8792,−59.7425

For 2k + 1 ≤ 51 the λ-values of the zeros of G2k+1 are real
and lie in (−∞, 0).

The λ-zeros of G2k−1 interlace with the λ-zeros of G2k+1.

The polynomials p2k+1(λ) are irreducible with Galois group
Sk−1 for k ≤ 9.



Location of zeros of G2k+1

In the fundamental domain D for Γ(2), λ(z) ∈ (−∞, 0) precisely
on Re(z) = 1.
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Location of zeros of G2k+1

In order to use an RSD-type argument, we move the line
Re(z) = 1 to the arc |z + 1/2| = 1/2 using the transformation
z → −1/z . Hence we consider instead

G2k+1|γ1(z) := G2k+1(z)|2k+1

(
0 −1
1 0

)
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Location of zeros of G2k+1

Theorem (GLST,’10)

For k ≥ 1, at least 90% of the zeros of G2k+1(z) have real

λ-values in the range (−∞, 0].



Location of zeros of G2k+1

Recalling

E2k+1,χ(z) :=
1

2

∑

(c,d)≡(0,1) (2)

χ(d)(cz + d)−(2k+1)

we define

Sk(α, β)(z) :=
∑

(c,d)≡(α,β) (4)

1

(cz + d)k
.

Then

E2k+1,χ(z) =
1

2
(S2k+1(0, 1) + S2k+1(2, 1) − S2k+1(0, 3) − S2k+1(2, 3)) .



Location of zeros of G2k+1

Restricting to zθ = 1/2e iθ − 1/2, we can show

G2k+1 |γ1 (zθ) = (S(0, 3) + S(1, 0) + S(2, 1) + S(3, 2)) (e iθ).

We balance the exponents as in RSD:

F2k+1(zθ) := (e iθ/2)2k+1G2k+1|γ1(zθ)

=
(
S̃2k+1(0, 3) + S̃2k+1(1, 0) + S̃2k+1(2, 1) + S̃2k+1(3, 2)

)
(θ)

where

S̃k(α, β)(θ) :=
∑

(c,d)≡(α,β) (4)
(c,d)=1

(ce iθ/2 + de−iθ/2)−k



Location of zeros of G2k+1

F2k+1(zθ) =(
S̃2k+1(0, 3) + S̃2k+1(1, 0) + S̃2k+1(2, 1) + S̃2k+1(3, 2)

)
(θ)

As in RSD, we extract the two terms with c2 + d2 = 1 to create
our main term:

F2k+1(zθ) = −2i sin

(
θ(2k + 1)

2

)
+ R2k+1(zθ)

Our goal is to show |R2k+1(zθ)| < 2.



Bounding the error term

We now collect terms satisfying c2 + d2 = N for fixed N > 1.

The terms with N ≤ 100 are dealt with carefully

The terms with N > 100 can be easily bounded using an
appropriate integral



Bounding the error term

For each ordered pair of nonnegative integers (a, b) with a odd and
b even, define

P(a, b)(θ) =
∑

(|c|,|d|)=(a,b) or (b,a)

(ce iθ/2 + de−iθ/2)−2k−1

where the sum is over those terms appearing in F2k+1(zθ).
For example,

P(3, 0) =
(
(−3e iθ/2)−2k−1 + (3e−iθ/2)−2k−1

)
=

2i

32k+1
sin

(
θ(2k + 1)

2

)

Due to symmetry, each P(a, b) is purely imaginary.



Bounding the error term

We assume that 2k + 1 > 51. When b = 0, we have the cases,

(a, b) ∈ {(3, 0), (5, 0), (7, 0), (9, 0)}.

Then

|P(a, b)(θ)| =
∣∣∣∣

2

a2k+1
sin

(
(2k + 1)θ

2

)∣∣∣∣ ≤
2

a51
.

The contribution from these terms is negligible.



Bounding the error term

When b 6= 0 we have

|P(a, b)| ≤ 2

((a − b)2 + 4ab sin2(θ/2))k
+

2

((a − b)2 + 4ab cos2(θ/2))k
.

For fixed θ, this is worst when a and b are both small and
a − b = 1.

When a− b = 1 and θ approaches 0 or π, we have problems.

We must bound sin2(θ/2) and cos2(θ/2) away from 0.



Bounding the error term

|P(a, b)| ≤ 2

((a − b)2 + 4ab sin2(θ/2))k
+

2

((a − b)2 + 4ab cos2(θ/2))k
.

Note that max(cos2(θ/2), sin2(θ/2)) ≥ 1/2.

We will require a bound min(cos2(θ/2), sin2(θ/2)) > α2 > 0.

Then we have

|P(a, b)| ≤ 2

((a − b)2 + 4abα2)k
+

2

((a − b)2 + 2ab)k
.



Bounding the error term

When c2 + d2 = N > 100 and | cos θ| < β, we can bound the
terms by

|ce iθ/2 + de−iθ/2|2 = c2 + 2cd cos θ + d2 ≥ (1− β)(c2 + d2)

The number of terms with c2 + d2 = N is at most
2(2

√
N + 1) ≤ 5

√
N , so

|R(zθ)| < E100(α) +
∞∑

N=101

5N1/2((1 − β)N)−k−1/2.

Bounding the sum with an integral yields

|R(zθ)| < E100(α) + (1− β)−k− 1
2

(
5

k − 1
· 100−k+1

)
.



Bounding the error term

|R(zθ)| < E100(α) + (1− β)−k− 1
2

(
5

k − 1
· 100−k+1

)
< 2

Balancing α and β to maximize the range of θ with error less than
2 yields a range of (0.05π, 0.95π).



Wrapping up the proof

Now we count the values θ at which 2 sin
(
θ(2k+1)

2

)
= ±2 and

apply the Intermediate Value Theorem to

iF2k+1(zθ) = 2 sin

(
θ(2k + 1)

2

)
+ iR(zθ).

We see that G2k+1|γ1(zθ) must have at least one zero in each
interval [

Aπ

2k + 1
,
(A+ 2)π

2k + 1

]
⊂ (0.05π, 0.95π),

where A > 0 is odd.

Hence we are assured that 90% of the zeros of G2k+1 have real,
negative λ-values.



Other groups

Fricke groups:

Γ0(p) ∪ Γ0(p)Wp , Wp :=
(

0 −1/
√
p√

p 0

)

Miezaki, Nozaki and Shigezumi (2007) For p = 2, 3, all zeros
located on arc of fundamental domain

Shigezumi (2007) partial result towards cases p = 5, 7

Hahn (2007) has more general result about Fuchsian groups
of the first kind



Summary

The RSD method is pushed to its limits as we near the cusps

The connection to cn(u) could provide a different method
which would give us all the zeros

No similar results are known for groups of nonzero genus


