Zeros of Eisenstein Series

Stephanie Treneer Western Washington University

May 8, 2010

Joint work with Sharon Garthwaite, Ling Long and Holly Swisher

Originated at the Women in Numbers Workshop, BIRS

The modular group

$$\Gamma := \operatorname{SL}_2(\mathbb{Z}) \text{ acts on } \mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$$
 by
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az + b}{cz + d}$$

A fundamental domain for this action is

$$\mathcal{F}:=\{z\in\mathbb{H}:-1/2\leq \mathsf{Re}(z)\leq 1/2, |z|\geq 1\}$$

Modular forms on **F**

A modular form of integer weight k for Γ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ with

$$f\left(rac{az+b}{cz+d}
ight)=(cz+d)^kf(z),\qquad z\in\mathbb{H},\left(egin{array}{c}a&b\\c&d\end{array}
ight)\in\Gamma$$

We can extend f to a point at ∞ and write a Fourier series for f at ∞ with $q := e^{2\pi i z}$:

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n$$

Eisenstein series

For even weight $k \ge 4$,

$$egin{aligned} G_k(z) &:= \sum_{\substack{c,d \in \mathbb{Z} \ (c,d)
eq (0,0)}} (cz+d)^{-k} \end{aligned}$$

are modular forms of weight k.

We can normalize so that the constant term in the Fourier expansion at ∞ is 1:

$$E_{k}(z) := \frac{1}{2\zeta(k)}G_{k}(z) = 1 - \frac{2k}{B_{k}}\sum_{n=1}^{\infty}\sigma_{k-1}(n)q^{n}$$

More useful for us:

$$E_k(z):=rac{1}{2}\sum_{\substack{c,d\in\mathbb{Z}\ (c,d)=1}}(cz+d)^{-k}$$

Eisenstein series can be viewed as arising from the Weierstrass \wp function, which satisfies

$$(\wp'(z))^2 = 4\wp(z)^3 - 60G_4\wp(z) - 140G_6$$

This differential equation can be solved recursively to get

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2}z^{2k}$$

Zeros of Eisenstein series

• How many zeros does $E_k(z)$ have in \mathcal{F} ?

• Where are the zeros located in \mathcal{F} ?

Number of zeros

Valence Formula: If $f \not\equiv 0$ is a modular form of weight k, let $\nu_{\tau}(f)$ be the order of f at $\tau \in \mathcal{F}$. Then

$$u_{\infty}(f) + rac{1}{2}\nu_i(f) + rac{1}{3}\nu_{\omega}(f) + \sum_{\tau \in \mathcal{F}, \tau \neq i, \omega} \nu_{\tau}(f) = rac{k}{12}$$

Since E_k is holomorphic on $\mathbb{H} \cup \{\infty\}$, it has $\approx k/12$ zeros in \mathcal{F} , counted with multiplicity.

Location of zeros

Theorem (F.K.C. Rankin, Swinnerton-Dyer) For all even $k \ge 4$, the zeros of $E_k(z)$ are all located on the arc

$$A := \{ z = e^{i\theta} : \pi/2 \le \theta \le 2\pi/3 \}$$

Outline of RSD result

• Write
$$k = 12n + s$$
, $s \in \{4, 6, 8, 10, 0, 14\}$

• Sufficient to show $E_k(e^{i\theta})$ has at least *n* zeros in $(\pi/2, 2\pi/3)$

• Define
$$F_k(heta) := e^{ik heta/2} E_k(e^{i heta}) = rac{1}{2} \sum_{\substack{c,d \in \mathbb{Z} \ (c,d)=1}} (ce^{i heta/2} + de^{-i heta/2})^{-k}$$

• Separate four terms with $c^2 + d^2 = 1$. Using Euler's formula,

$$F_k(\theta) = 2\cos(k\theta/2) + R$$

where *R* is the remaining sum over terms with $c^2 + d^2 > 1$

Outline of RSD result

- Bound |R| < 2 on [π/2, 2π/3]
- The number of zeros of F_k(θ) (hence E_k(e^{iθ})), is at least the number of zeros of 2 cos(kθ/2) on this interval, by an Intermediate Value Theorem argument.
- The zeros of $2\cos(k\theta/2)$ can be easily counted. There are *n* of them.

Interlacing of zeros

Theorem (Nozaki, '08)

Any zero of $E_k(e^{i\theta})$ lies between two consecutive zeros of $E_{k+12}(e^{i\theta})$ on $\pi/2 < \theta < 2\pi/3$.

Related results on Γ

- Kohnen (2004) derives a closed formula for the precise locations of the zeros of E_k(z) in terms of the Fourier coefficients
- Gekeler (2001) cites computational evidence that the polynomials

$$\varphi_k(x) = \prod_{\substack{j(z) \text{ where } E_k(z) = 0\\ j(z) \neq 0, 1728}} (x - j(z))$$

are irreducible with full Galois group S_d where d is the degree of $\varphi_k(x)$.

Related results on **F**

Duke and Jenkins (2008) prove that the zeros of the weight k weakly holomorphic modular forms f_{k,m}(z) = q^{-m} + O(qⁿ⁺¹) (with k = 12n + s as before) lie on the unit circle. They use a circle method argument to bound the error term.

Congruence subgroup $\Gamma(2)$

$$\Gamma(2) := \left\{ \gamma \in \Gamma : \gamma \equiv \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight) \pmod{2}
ight\}$$

 $\Gamma(2)$ has genus 0 and three inequivalent cusps: 0, 1, $\infty.$

The fundamental domain for $\Gamma(2)$ is

 $D := \{z \in \mathbb{H} : -1 \le \mathsf{Re}(z) \le 1, |z - 1/2| \ge 1/2, |z + 1/2| \ge 1/2\}$

Some odd weight Eisenstein series on $\Gamma(2)$

Let
$$\chi(d) := \left(\frac{-1}{d}\right)$$
. For $k \ge 1$ let
 $E_{2k+1,\chi}(z) := \frac{1}{2} \sum_{\substack{(c,d) \equiv (0,1) \pmod{2} \\ (c,d) = 1}} \chi(d)(cz+d)^{-(2k+1)}$

Then

$$E_{2k+1,\chi}\left(rac{az+b}{cz+d}
ight) = \chi(d)(cz+d)^{-(2k+1)}E_{2k+1,\chi}(z)$$

for all $z \in \mathbb{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$, and is holomorphic at the cusps.

 $E_{2k+1,\chi}$ is a modular form of weight 2k + 1 for $\Gamma(2)$ with character χ .

Some odd weight Eisenstein series on $\Gamma(2)$

Zeros of $E_{2k+1,\chi}$ can be studied using the classical Jacobi elliptic function cn(u), a doubly periodic generalization of $\cos u$ which satisfies

$$\frac{\kappa K}{2\pi} cn\left(\frac{2Ku}{\pi}\right) = \frac{\sqrt{q}\cos u}{1+q} + \frac{\sqrt{q^3}\cos 3u}{1+q^3} + \frac{\sqrt{q^5}\cos 5u}{1+q^5} + \cdots$$

where $K = \frac{\pi}{2}\Theta_3^2(2z)$ and $\kappa = \frac{\Theta_2^2(2z)}{\Theta_3^2(2z)}$, with
 $\Theta_2(z) := q^{1/8} \sum_{n \in \mathbb{Z}} q^{n(n+1)/2}, \ \Theta_3(z) := \sum_{n \in \mathbb{Z}} q^{n^2/2}$

Some odd weight Eisenstein series on $\Gamma(2)$

Using the Taylor series for $\cos u$, we have

$$\frac{\kappa K}{2\pi} cn\left(\frac{2Ku}{\pi}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \left(\sum_{r=1}^{\infty} \frac{(2r-1)^{2k} q^{(2r-1)/2}}{1+q^{2r-1}}\right) u^{2k}$$

and solving for cn(u), we have

$$cn(u) = \sum_{k=0}^{\infty} \frac{ie_{2k}\pi^{2k+1}}{2^{2k+1}(2k)!} \frac{G_{2k+1}(2z)}{K^{2k+1}\kappa} u^{2k}$$

where

$$G_{2k+1}(z) := E_{2k+1,\chi} \mid_{\gamma_0} (z) = \frac{4(-i)^{2k+1}}{e_{2k}} \sum_{r=1}^{\infty} \frac{(2r-1)^{2k} q^{(2r-1)/4}}{1+q^{(2r-1)/2}}$$

is the Fourier expansion of $E_{2k+1,\chi}$ at the cusp 1.

Another view of cn(u)

An alternative description of cn(u) is found by solving the differential equation

$$\left(\frac{\mathrm{d}\,cn(u)}{\mathrm{d}\,u}\right)^2 = \left(1 - cn^2(u)\right)\left(1 - \lambda + \lambda cn^2(u)\right)$$

to get

$$cn(u) = 1 - \frac{u^2}{2!} + (1 + 4\lambda)\frac{u^4}{4!} - (1 + 44\lambda + 16\lambda^2)\frac{u^6}{6!} + \cdots$$

Here $\lambda(z) := \frac{\Theta_2^4(z)}{\Theta_3^4(z)}$ generates the field of meromorphic modular functions for $\Gamma(2)$ (analogous to j(z) for Γ). Note that $\lambda(2z) = \kappa^2$.

Zeros of $G_{2k+1}(z)$

Equating coefficients in our two expressions for cn(u) we see that

$$\frac{(-1)^k i \pi^{2k+1} e_{2k}}{2^{2k+1}} \cdot \frac{G_{2k+1}(2z)}{K^{2k+1}\kappa} = \frac{(-1)^k e_{2k} G_{2k+1}(2z)}{\Theta_3^{4k}(2z) G_1(2z)}$$

is a polynomial $p_{2k+1}(\lambda)$ of degree k-1, having the same zeros as G_{2k+1} in D.

This is expected, since this quotient is a modular function that is holomorphic on \mathbb{H} , but now we can easily compute the zeros!

Computational results

k	$p_{2k+1}(\lambda)$	Zeros
2	$1+4\lambda$	-0.25
3	$1+44\lambda+16\lambda^2$	-0.0229, -2.7271
4	$1+408\lambda+912\lambda^2+64\lambda^3$	-0.0025, -0.4598, -13.778
5	$1 + 3688\lambda + 30764\lambda^2 + 15808\lambda^3 + 256\lambda^4$	00027,1280, -1.8792, -59.7425

- For 2k + 1 ≤ 51 the λ-values of the zeros of G_{2k+1} are real and lie in (−∞, 0).
- The λ -zeros of G_{2k-1} interlace with the λ -zeros of G_{2k+1} .
- The polynomials p_{2k+1}(λ) are irreducible with Galois group S_{k-1} for k ≤ 9.

In the fundamental domain D for $\Gamma(2)$, $\lambda(z) \in (-\infty, 0)$ precisely on $\operatorname{Re}(z) = 1$.

In order to use an RSD-type argument, we move the line $\operatorname{Re}(z) = 1$ to the arc |z + 1/2| = 1/2 using the transformation $z \to -1/z$. Hence we consider instead

Theorem (GLST,'10)

For $k \ge 1$, at least 90% of the zeros of $G_{2k+1}(z)$ have real λ -values in the range $(-\infty, 0]$.

Recalling

$$E_{2k+1,\chi}(z) := \frac{1}{2} \sum_{(c,d) \equiv (0,1) \ (2)} \chi(d) (cz+d)^{-(2k+1)}$$

we define

$$S_k(\alpha,\beta)(z) := \sum_{(c,d)\equiv(lpha,eta)} rac{1}{(cz+d)^k}.$$

Then

$$E_{2k+1,\chi}(z) = \frac{1}{2} \left(S_{2k+1}(0,1) + S_{2k+1}(2,1) - S_{2k+1}(0,3) - S_{2k+1}(2,3) \right).$$

Restricting to $z_{\theta} = 1/2e^{i\theta} - 1/2$, we can show

 $G_{2k+1} \mid_{\gamma_1} (z_{\theta}) = (S(0,3) + S(1,0) + S(2,1) + S(3,2)) (e^{i\theta}).$

We balance the exponents as in RSD:

$$egin{aligned} &\mathcal{F}_{2k+1}(z_{ heta}) \coloneqq (e^{i heta/2})^{2k+1} \mathcal{G}_{2k+1}|_{\gamma_1}(z_{ heta}) \ &= \left(\widetilde{\mathcal{S}}_{2k+1}(0,3) + \widetilde{\mathcal{S}}_{2k+1}(1,0) + \widetilde{\mathcal{S}}_{2k+1}(2,1) + \widetilde{\mathcal{S}}_{2k+1}(3,2)
ight)(heta) \end{aligned}$$

where

$$\widetilde{S}_k(lpha,eta)(heta):=\sum_{\substack{(c,d)\equiv(lpha,eta)\ (c,d)=1}}(ce^{i heta/2}+de^{-i heta/2})^{-k}$$

$$F_{2k+1}(z_{\theta}) = \\ \left(\widetilde{S}_{2k+1}(0,3) + \widetilde{S}_{2k+1}(1,0) + \widetilde{S}_{2k+1}(2,1) + \widetilde{S}_{2k+1}(3,2)\right)(\theta)$$

As in RSD, we extract the two terms with $c^2 + d^2 = 1$ to create our main term:

$$F_{2k+1}(z_{\theta}) = -2i\sin\left(\frac{\theta(2k+1)}{2}\right) + R_{2k+1}(z_{\theta})$$

Our goal is to show $|R_{2k+1}(z_{\theta})| < 2$.

We now collect terms satisfying $c^2 + d^2 = N$ for fixed N > 1.

- The terms with $N \leq 100$ are dealt with carefully
- The terms with N > 100 can be easily bounded using an appropriate integral

For each ordered pair of nonnegative integers (a, b) with a odd and b even, define

$$P(a,b)(\theta) = \sum_{(|c|,|d|)=(a,b) \text{ or } (b,a)} (ce^{i\theta/2} + de^{-i\theta/2})^{-2k-1}$$

where the sum is over those terms appearing in $F_{2k+1}(z_{\theta})$. For example,

$$P(3,0) = \left((-3e^{i\theta/2})^{-2k-1} + (3e^{-i\theta/2})^{-2k-1} \right) = \frac{2i}{3^{2k+1}} \sin\left(\frac{\theta(2k+1)}{2}\right)$$

Due to symmetry, each P(a, b) is purely imaginary.

We assume that 2k + 1 > 51. When b = 0, we have the cases,

$$(a,b) \in \{(3,0), (5,0), (7,0), (9,0)\}.$$

Then

$$|P(a,b)(\theta)| = \left|\frac{2}{a^{2k+1}}\sin\left(\frac{(2k+1)\theta}{2}\right)\right| \leq \frac{2}{a^{51}}.$$

The contribution from these terms is negligible.

When $b \neq 0$ we have

$$|P(a,b)| \leq \frac{2}{((a-b)^2 + 4ab\sin^2(\theta/2))^k} + \frac{2}{((a-b)^2 + 4ab\cos^2(\theta/2))^k}.$$

- For fixed θ, this is worst when a and b are both small and a - b = 1.
- When a b = 1 and θ approaches 0 or π , we have problems.
- We must bound $\sin^2(\theta/2)$ and $\cos^2(\theta/2)$ away from 0.

$$|P(a,b)| \leq \frac{2}{((a-b)^2 + 4ab\sin^2(\theta/2))^k} + \frac{2}{((a-b)^2 + 4ab\cos^2(\theta/2))^k}.$$

Note that $\max(\cos^2(\theta/2), \sin^2(\theta/2)) \ge 1/2$.

We will require a bound $\min(\cos^2(\theta/2), \sin^2(\theta/2)) > \alpha^2 > 0$.

Then we have

$$|P(a,b)| \leq \frac{2}{((a-b)^2 + 4ab\alpha^2)^k} + \frac{2}{((a-b)^2 + 2ab)^k}.$$

When $c^2+d^2=N>100$ and $|\cos\theta|<\beta,$ we can bound the terms by

$$|ce^{i heta/2}+de^{-i heta/2}|^2=c^2+2cd\cos heta+d^2\geq(1-eta)(c^2+d^2)$$

The number of terms with $c^2 + d^2 = N$ is at most $2(2\sqrt{N}+1) \leq 5\sqrt{N}$, so

$$|R(z_{\theta})| < E_{100}(\alpha) + \sum_{N=101}^{\infty} 5N^{1/2}((1-\beta)N)^{-k-1/2}.$$

Bounding the sum with an integral yields

$$|R(z_{ heta})| < E_{100}(lpha) + (1-eta)^{-k-rac{1}{2}} \left(rac{5}{k-1} \cdot 100^{-k+1}
ight).$$

$$|R(z_{\theta})| < E_{100}(\alpha) + (1-\beta)^{-k-\frac{1}{2}} \left(\frac{5}{k-1} \cdot 100^{-k+1}\right) < 2$$

Balancing α and β to maximize the range of θ with error less than 2 yields a range of $(0.05\pi, 0.95\pi)$.

Wrapping up the proof

Now we count the values θ at which $2\sin\left(\frac{\theta(2k+1)}{2}\right) = \pm 2$ and apply the Intermediate Value Theorem to

$$iF_{2k+1}(z_{\theta}) = 2\sin\left(\frac{\theta(2k+1)}{2}\right) + iR(z_{\theta}).$$

We see that $G_{2k+1}|_{\gamma_1}(z_{\theta})$ must have at least one zero in each interval

$$\left[rac{A\pi}{2k+1},rac{(A+2)\pi}{2k+1}
ight] \subset (0.05\pi,0.95\pi),$$

where A > 0 is odd.

Hence we are assured that 90% of the zeros of G_{2k+1} have real, negative λ -values.

Other groups

Fricke groups:

$$\Gamma_0(p) \cup \Gamma_0(p) W_p, \quad W_p := \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix}$$

- Miezaki, Nozaki and Shigezumi (2007) For p = 2, 3, all zeros located on arc of fundamental domain
- Shigezumi (2007) partial result towards cases p = 5,7

• Hahn (2007) has more general result about Fuchsian groups of the first kind

Summary

- The RSD method is pushed to its limits as we near the cusps
- The connection to cn(u) could provide a different method which would give us all the zeros
- No similar results are known for groups of nonzero genus