Zeros of Eisenstein Series

Stephanie Treneer
Western Washington University

$$
\text { May 8, } 2010
$$

Joint work with Sharon Garthwaite, Ling Long and Holly Swisher

Originated at the Women in Numbers Workshop, BIRS

The modular group

$\Gamma:=\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{lm}(z)>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

A fundamental domain for this action is

$$
\mathcal{F}:=\{z \in \mathbb{H}:-1 / 2 \leq \operatorname{Re}(z) \leq 1 / 2,|z| \geq 1\}
$$

Modular forms on Γ

A modular form of integer weight k for Γ is a holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ with

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z), \quad z \in \mathbb{H},\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

We can extend f to a point at ∞ and write a Fourier series for f at ∞ with $q:=e^{2 \pi i z}$:

$$
f(z)=\sum_{n=0}^{\infty} a(n) q^{n}
$$

Eisenstein series

For even weight $k \geq 4$,

$$
G_{k}(z):=\sum_{\substack{c, d \in \mathbb{Z} \\(c, d) \neq(0,0)}}(c z+d)^{-k}
$$

are modular forms of weight k.
We can normalize so that the constant term in the Fourier expansion at ∞ is 1 :

$$
E_{k}(z):=\frac{1}{2 \zeta(k)} G_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

More useful for us:

$$
E_{k}(z):=\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\(c, d)=1}}(c z+d)^{-k}
$$

Eisenstein series

Eisenstein series can be viewed as arising from the Weierstrass \wp function, which satisfies

$$
\left(\wp^{\prime}(z)\right)^{2}=4 \wp(z)^{3}-60 G_{4} \wp(z)-140 G_{6}
$$

This differential equation can be solved recursively to get

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2} z^{2 k}
$$

Zeros of Eisenstein series

- How many zeros does $E_{k}(z)$ have in \mathcal{F} ?
- Where are the zeros located in \mathcal{F} ?

Number of zeros

Valence Formula: If $f \not \equiv 0$ is a modular form of weight k, let $\nu_{\tau}(f)$ be the order of f at $\tau \in \mathcal{F}$. Then

$$
\nu_{\infty}(f)+\frac{1}{2} \nu_{i}(f)+\frac{1}{3} \nu_{\omega}(f)+\sum_{\tau \in \mathcal{F}, \tau \neq i, \omega} \nu_{\tau}(f)=\frac{k}{12}
$$

Since E_{k} is holomorphic on $\mathbb{H} \cup\{\infty\}$, it has $\approx k / 12$ zeros in \mathcal{F}, counted with multiplicity.

Location of zeros

Theorem (F.K.C. Rankin, Swinnerton-Dyer)
For all even $k \geq 4$, the zeros of $E_{k}(z)$ are all located on the arc

$$
A:=\left\{z=e^{i \theta}: \pi / 2 \leq \theta \leq 2 \pi / 3\right\}
$$

Outline of RSD result

- Write $k=12 n+s, s \in\{4,6,8,10,0,14\}$
- Sufficient to show $E_{k}\left(e^{i \theta}\right)$ has at least n zeros in $(\pi / 2,2 \pi / 3)$
- Define $F_{k}(\theta):=e^{i k \theta / 2} E_{k}\left(e^{i \theta}\right)=\frac{1}{2} \sum_{\substack{c, d \in \mathbb{Z} \\(c, d)=1}}\left(c e^{i \theta / 2}+d e^{-i \theta / 2}\right)^{-k}$
- Separate four terms with $c^{2}+d^{2}=1$. Using Euler's formula,

$$
F_{k}(\theta)=2 \cos (k \theta / 2)+R
$$

where R is the remaining sum over terms with $c^{2}+d^{2}>1$

Outline of RSD result

- Bound $|R|<2$ on $[\pi / 2,2 \pi / 3]$
- The number of zeros of $F_{k}(\theta)$ (hence $E_{k}\left(e^{i \theta}\right)$), is at least the number of zeros of $2 \cos (k \theta / 2)$ on this interval, by an Intermediate Value Theorem argument.
- The zeros of $2 \cos (k \theta / 2)$ can be easily counted. There are n of them.

Interlacing of zeros

Theorem (Nozaki, '08)
Any zero of $E_{k}\left(e^{i \theta}\right)$ lies between two consecutive zeros of $E_{k+12}\left(e^{i \theta}\right)$ on $\pi / 2<\theta<2 \pi / 3$.

Related results on 「

- Kohnen (2004) derives a closed formula for the precise locations of the zeros of $E_{k}(z)$ in terms of the Fourier coefficients
- Gekeler (2001) cites computational evidence that the polynomials

$$
\varphi_{k}(x)=\prod_{\substack{j(z) \\ \text { where } E_{k}(z)=0 \\ j(z) \neq 0,1728}}(x-j(z))
$$

are irreducible with full Galois group S_{d} where d is the degree of $\varphi_{k}(x)$.

Related results on 「

- Duke and Jenkins (2008) prove that the zeros of the weight k weakly holomorphic modular forms $f_{k, m}(z)=q^{-m}+O\left(q^{n+1}\right)$ (with $k=12 n+s$ as before) lie on the unit circle. They use a circle method argument to bound the error term.

Congruence subgroup 「(2)

$$
\Gamma(2):=\left\{\gamma \in \Gamma: \gamma \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod 2)\right\}
$$

$\Gamma(2)$ has genus 0 and three inequivalent cusps: $0,1, \infty$.
The fundamental domain for $\Gamma(2)$ is

$$
D:=\{z \in \mathbb{H}:-1 \leq \operatorname{Re}(z) \leq 1,|z-1 / 2| \geq 1 / 2,|z+1 / 2| \geq 1 / 2\}
$$

Some odd weight Eisenstein series on $\Gamma(2)$

Let $\chi(d):=\left(\frac{-1}{d}\right)$. For $k \geq 1$ let

$$
E_{2 k+1, \chi}(z):=\frac{1}{2} \sum_{\substack{(c, d) \equiv(0,1)(\bmod 2) \\(c, d)=1}} \chi(d)(c z+d)^{-(2 k+1)}
$$

Then

$$
E_{2 k+1, \chi}\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{-(2 k+1)} E_{2 k+1, \chi}(z)
$$

for all $z \in \mathbb{H}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(2)$, and is holomorphic at the cusps.
$E_{2 k+1, \chi}$ is a modular form of weight $2 k+1$ for $\Gamma(2)$ with character χ.

Some odd weight Eisenstein series on $\Gamma(2)$

Zeros of $E_{2 k+1, \chi}$ can be studied using the classical Jacobi elliptic function $c n(u)$, a doubly periodic generalization of $\cos u$ which satisfies

$$
\frac{\kappa K}{2 \pi} c n\left(\frac{2 K u}{\pi}\right)=\frac{\sqrt{q} \cos u}{1+q}+\frac{\sqrt{q^{3}} \cos 3 u}{1+q^{3}}+\frac{\sqrt{q^{5}} \cos 5 u}{1+q^{5}}+\cdots
$$

where $K=\frac{\pi}{2} \Theta_{3}^{2}(2 z)$ and $\kappa=\frac{\Theta_{2}^{2}(2 z)}{\Theta_{3}^{2}(2 z)}$, with

$$
\Theta_{2}(z):=q^{1 / 8} \sum_{n \in \mathbb{Z}} q^{n(n+1) / 2}, \Theta_{3}(z):=\sum_{n \in \mathbb{Z}} q^{n^{2} / 2}
$$

Some odd weight Eisenstein series on $\Gamma(2)$

Using the Taylor series for $\cos u$, we have

$$
\frac{\kappa K}{2 \pi} c n\left(\frac{2 K u}{\pi}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!}\left(\sum_{r=1}^{\infty} \frac{(2 r-1)^{2 k} q^{(2 r-1) / 2}}{1+q^{2 r-1}}\right) u^{2 k}
$$

and solving for $c n(u)$, we have

$$
c n(u)=\sum_{k=0}^{\infty} \frac{i e_{2 k} \pi^{2 k+1}}{2^{2 k+1}(2 k)!} \frac{G_{2 k+1}(2 z)}{K^{2 k+1} \kappa} u^{2 k}
$$

where

$$
G_{2 k+1}(z):=\left.E_{2 k+1, \chi}\right|_{\gamma_{0}}(z)=\frac{4(-i)^{2 k+1}}{e_{2 k}} \sum_{r=1}^{\infty} \frac{(2 r-1)^{2 k} q^{(2 r-1) / 4}}{1+q^{(2 r-1) / 2}}
$$

is the Fourier expansion of $E_{2 k+1, \chi}$ at the cusp 1.

Another view of $c n(u)$

An alternative description of $c n(u)$ is found by solving the differential equation

$$
\left(\frac{\mathrm{d} c n(u)}{\mathrm{d} u}\right)^{2}=\left(1-c n^{2}(u)\right)\left(1-\lambda+\lambda c n^{2}(u)\right)
$$

to get

$$
c n(u)=1-\frac{u^{2}}{2!}+(1+4 \lambda) \frac{u^{4}}{4!}-\left(1+44 \lambda+16 \lambda^{2}\right) \frac{u^{6}}{6!}+\cdots
$$

Here $\lambda(z):=\frac{\Theta_{2}^{4}(z)}{\Theta_{3}^{4}(z)}$ generates the field of meromorphic modular functions for $\Gamma(2)$ (analogous to $j(z)$ for Γ). Note that $\lambda(2 z)=\kappa^{2}$.

Zeros of $G_{2 k+1}(z)$

Equating coefficients in our two expressions for $c n(u)$ we see that

$$
\frac{(-1)^{k} i \pi^{2 k+1} e_{2 k}}{2^{2 k+1}} \cdot \frac{G_{2 k+1}(2 z)}{K^{2 k+1} \kappa}=\frac{(-1)^{k} e_{2 k} G_{2 k+1}(2 z)}{\Theta_{3}^{4 k}(2 z) G_{1}(2 z)}
$$

is a polynomial $p_{2 k+1}(\lambda)$ of degree $k-1$, having the same zeros as $G_{2 k+1}$ in D.

This is expected, since this quotient is a modular function that is holomorphic on \mathbb{H}, but now we can easily compute the zeros!

Computational results

k	$p_{2 k+1}(\lambda)$	Zeros
2	$1+4 \lambda$	-0.25
3	$1+44 \lambda+16 \lambda^{2}$	$-0.0229,-2.7271$
4	$1+408 \lambda+912 \lambda^{2}+64 \lambda^{3}$	$-0.0025,-0.4598,-13.778$
5	$1+3688 \lambda+30764 \lambda^{2}+15808 \lambda^{3}+256 \lambda^{4}$	$-.00027,-.1280,-1.8792,-59.7425$

- For $2 k+1 \leq 51$ the λ-values of the zeros of $G_{2 k+1}$ are real and lie in $(-\infty, 0)$.
- The λ-zeros of $G_{2 k-1}$ interlace with the λ-zeros of $G_{2 k+1}$.
- The polynomials $p_{2 k+1}(\lambda)$ are irreducible with Galois group S_{k-1} for $k \leq 9$.

Location of zeros of $G_{2 k+1}$

In the fundamental domain D for $\Gamma(2), \lambda(z) \in(-\infty, 0)$ precisely on $\operatorname{Re}(z)=1$.

Location of zeros of $G_{2 k+1}$

In order to use an RSD-type argument, we move the line $\operatorname{Re}(z)=1$ to the arc $|z+1 / 2|=1 / 2$ using the transformation $z \rightarrow-1 / z$. Hence we consider instead

$$
\left.G_{2 k+1}\right|_{\gamma_{1}}(z):=\left.G_{2 k+1}(z)\right|_{2 k+1}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Location of zeros of $G_{2 k+1}$

Theorem (GLST,'10)
For $k \geq 1$, at least 90% of the zeros of $G_{2 k+1}(z)$ have real λ-values in the range $(-\infty, 0]$.

Location of zeros of $G_{2 k+1}$

Recalling

$$
E_{2 k+1, \chi}(z):=\frac{1}{2} \sum_{(c, d) \equiv(0,1)(2)} \chi(d)(c z+d)^{-(2 k+1)}
$$

we define

$$
S_{k}(\alpha, \beta)(z):=\sum_{(c, d) \equiv(\alpha, \beta)(4)} \frac{1}{(c z+d)^{k}} .
$$

Then

$$
E_{2 k+1, \chi}(z)=\frac{1}{2}\left(S_{2 k+1}(0,1)+S_{2 k+1}(2,1)-S_{2 k+1}(0,3)-S_{2 k+1}(2,3)\right)
$$

Location of zeros of $G_{2 k+1}$

Restricting to $z_{\theta}=1 / 2 e^{i \theta}-1 / 2$, we can show

$$
\left.G_{2 k+1}\right|_{\gamma_{1}}\left(z_{\theta}\right)=(S(0,3)+S(1,0)+S(2,1)+S(3,2))\left(e^{i \theta}\right)
$$

We balance the exponents as in RSD:

$$
\begin{align*}
& F_{2 k+1}\left(z_{\theta}\right):=\left.\left(e^{i \theta / 2}\right)^{2 k+1} G_{2 k+1}\right|_{\gamma_{1}}\left(z_{\theta}\right) \\
& =\left(\widetilde{S}_{2 k+1}(0,3)+\widetilde{S}_{2 k+1}(1,0)+\widetilde{S}_{2 k+1}(2,1)+\widetilde{S}_{2 k+1}(3,2)\right)
\end{align*}
$$

where

$$
\widetilde{S}_{k}(\alpha, \beta)(\theta):=\sum_{\substack{(c, d) \equiv(\alpha, \beta)(4) \\(c, d)=1}}\left(c e^{i \theta / 2}+d e^{-i \theta / 2}\right)^{-k}
$$

Location of zeros of $G_{2 k+1}$

$$
\begin{aligned}
& F_{2 k+1}\left(z_{\theta}\right)= \\
& \quad\left(\widetilde{S}_{2 k+1}(0,3)+\widetilde{S}_{2 k+1}(1,0)+\widetilde{S}_{2 k+1}(2,1)+\widetilde{S}_{2 k+1}(3,2)\right)(\theta)
\end{aligned}
$$

As in RSD, we extract the two terms with $c^{2}+d^{2}=1$ to create our main term:

$$
F_{2 k+1}\left(z_{\theta}\right)=-2 i \sin \left(\frac{\theta(2 k+1)}{2}\right)+R_{2 k+1}\left(z_{\theta}\right)
$$

Our goal is to show $\left|R_{2 k+1}\left(z_{\theta}\right)\right|<2$.

Bounding the error term

We now collect terms satisfying $c^{2}+d^{2}=N$ for fixed $N>1$.

- The terms with $N \leq 100$ are dealt with carefully
- The terms with $N>100$ can be easily bounded using an appropriate integral

Bounding the error term

For each ordered pair of nonnegative integers (a, b) with a odd and b even, define

$$
P(a, b)(\theta)=\sum_{(|c|,|d|)=(a, b) \text { or }(b, a)}\left(c e^{i \theta / 2}+d e^{-i \theta / 2}\right)^{-2 k-1}
$$

where the sum is over those terms appearing in $F_{2 k+1}\left(z_{\theta}\right)$. For example,
$P(3,0)=\left(\left(-3 e^{i \theta / 2}\right)^{-2 k-1}+\left(3 e^{-i \theta / 2}\right)^{-2 k-1}\right)=\frac{2 i}{3^{2 k+1}} \sin \left(\frac{\theta(2 k+1)}{2}\right)$
Due to symmetry, each $P(a, b)$ is purely imaginary.

Bounding the error term

We assume that $2 k+1>51$. When $b=0$, we have the cases,

$$
(a, b) \in\{(3,0),(5,0),(7,0),(9,0)\} .
$$

Then

$$
|P(a, b)(\theta)|=\left|\frac{2}{a^{2 k+1}} \sin \left(\frac{(2 k+1) \theta}{2}\right)\right| \leq \frac{2}{a^{51}}
$$

The contribution from these terms is negligible.

Bounding the error term

When $b \neq 0$ we have

$$
|P(a, b)| \leq \frac{2}{\left((a-b)^{2}+4 a b \sin ^{2}(\theta / 2)\right)^{k}}+\frac{2}{\left((a-b)^{2}+4 a b \cos ^{2}(\theta / 2)\right)^{k}}
$$

- For fixed θ, this is worst when a and b are both small and $a-b=1$.
- When $a-b=1$ and θ approaches 0 or π, we have problems.
- We must bound $\sin ^{2}(\theta / 2)$ and $\cos ^{2}(\theta / 2)$ away from 0 .

Bounding the error term

$$
|P(a, b)| \leq \frac{2}{\left((a-b)^{2}+4 a b \sin ^{2}(\theta / 2)\right)^{k}}+\frac{2}{\left((a-b)^{2}+4 a b \cos ^{2}(\theta / 2)\right)^{k}}
$$

Note that $\max \left(\cos ^{2}(\theta / 2), \sin ^{2}(\theta / 2)\right) \geq 1 / 2$.
We will require a bound $\min \left(\cos ^{2}(\theta / 2), \sin ^{2}(\theta / 2)\right)>\alpha^{2}>0$.
Then we have

$$
|P(a, b)| \leq \frac{2}{\left((a-b)^{2}+4 a b \alpha^{2}\right)^{k}}+\frac{2}{\left((a-b)^{2}+2 a b\right)^{k}}
$$

Bounding the error term

When $c^{2}+d^{2}=N>100$ and $|\cos \theta|<\beta$, we can bound the terms by

$$
\left|c e^{i \theta / 2}+d e^{-i \theta / 2}\right|^{2}=c^{2}+2 c d \cos \theta+d^{2} \geq(1-\beta)\left(c^{2}+d^{2}\right)
$$

The number of terms with $c^{2}+d^{2}=N$ is at most $2(2 \sqrt{N}+1) \leq 5 \sqrt{N}$, so

$$
\left|R\left(z_{\theta}\right)\right|<E_{100}(\alpha)+\sum_{N=101}^{\infty} 5 N^{1 / 2}((1-\beta) N)^{-k-1 / 2}
$$

Bounding the sum with an integral yields

$$
\left|R\left(z_{\theta}\right)\right|<E_{100}(\alpha)+(1-\beta)^{-k-\frac{1}{2}}\left(\frac{5}{k-1} \cdot 100^{-k+1}\right)
$$

Bounding the error term

$$
\left|R\left(z_{\theta}\right)\right|<E_{100}(\alpha)+(1-\beta)^{-k-\frac{1}{2}}\left(\frac{5}{k-1} \cdot 100^{-k+1}\right)<2
$$

Balancing α and β to maximize the range of θ with error less than 2 yields a range of $(0.05 \pi, 0.95 \pi)$.

Wrapping up the proof

Now we count the values θ at which $2 \sin \left(\frac{\theta(2 k+1)}{2}\right)= \pm 2$ and apply the Intermediate Value Theorem to

$$
i F_{2 k+1}\left(z_{\theta}\right)=2 \sin \left(\frac{\theta(2 k+1)}{2}\right)+i R\left(z_{\theta}\right)
$$

We see that $\left.G_{2 k+1}\right|_{\gamma_{1}}\left(z_{\theta}\right)$ must have at least one zero in each interval

$$
\left[\frac{A \pi}{2 k+1}, \frac{(A+2) \pi}{2 k+1}\right] \subset(0.05 \pi, 0.95 \pi)
$$

where $A>0$ is odd.
Hence we are assured that 90% of the zeros of $G_{2 k+1}$ have real, negative λ-values.

Other groups

Fricke groups:

$$
\Gamma_{0}(p) \cup \Gamma_{0}(p) W_{p}, \quad W_{p}:=\left(\begin{array}{cc}
0 & -1 / \sqrt{p} \\
\sqrt{p} & 0
\end{array}\right)
$$

- Miezaki, Nozaki and Shigezumi (2007) For $p=2,3$, all zeros located on arc of fundamental domain
- Shigezumi (2007) partial result towards cases $p=5,7$
- Hahn (2007) has more general result about Fuchsian groups of the first kind

Summary

- The RSD method is pushed to its limits as we near the cusps
- The connection to $c n(u)$ could provide a different method which would give us all the zeros
- No similar results are known for groups of nonzero genus

