DIRICHLET SERIES FOR SQUARES OF SUMS OF SQUARES: A
SUMMARY

JONATHAN MICHAEL BORWEIN AND KWOK-KWONG STEPHEN CHOI

This note is a summary version of the results that the authors presented at
CNTA VII in Montreal and detailed proofs may be found in [2].

Let o4 denote the sum of kth powers of the divisors of n. There is a beautiful
formula for the generating functions of oy (n) (see Theorem 291 in Chapter XVII
of [8])

o0
(o)) (n)
1 = -k R 1L,k+1
(1) ngl s = C(8)C(s — k), R(s) > max{l,k+1}
which is in terms of only the Riemann Zeta function ((s). Following Hardy and
Wright, by standard techniques, one can prove the following remarkable identity
due to Ramanujan (also see Theorem 305 in Chapter XVII of [8] or [13])

o0

@) ) ga(n)os(n) _ ¢(s)¢(s — a){(s — b)¢(s —a—b)

ns ((2s —a—b)

n=1

for ®(s) > max{1l,a+1,b+1,a+b+1}. In this paper, we identify other arithmetical
functions enjoying similarly explicit representations. We begin by generalizing the
above result and proving that

Theorem 1. If f; and g; are completely multiplicative arithmetical functions, then
we have

— (f1x91)(n) - (f2%92)(n) _ Ly, 1,(8)Lygigs(8)Lpig(5) Ly, s (5)
> =
= n? Lf1f29192 (25)

n=1

where Lg(s) := Yo", f(n)n~* is the Dirichlet series corresponding to f and the
convolution f x g

Fxgn) =) f(d)g(n/d),
d|n

provided that R(s) is greater than all the abscissa of absolute convergence of Ly,(s)
and Lg,(s).
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This result recovers Hardy and Wright’s formulae (1) and (2) immediately. In
fact, Rankin and Selberg discovered the formula of Theorem 1 when they considered
the convolution L-functions attached to automorphic forms (e.g. see Chapter 13 in
[9] or [11]), as was pointed out by Ram Murty to the authors.

More generally, for certain classes of Dirichlet series, > - | A(n)n~*, our The-
orem 1 can be applied to obtain closed forms for the series Y oo A*(n)n~%. In
particular, if the generating function Ly(s) of an arithmetic function f is express-

ible as a sum of products of two L-functions:

Lf(S) = Z a(X17X2)LX1 (S)LX2 (S)

X1,X2

for appropriate coefficients a(x1,x2) and Dirichlet characters y;, then we are able
to find a simple closed form (in term of L-functions) for the generating function
L3(s) 1= Y50, fA(n)n~

One of our central applications is to the study of the number of representations as
a sum of squares. Let rx(n) be the number of solutions to % + 2% +---+ 2% =n
(counting permutations and signs). Hardy and Wright record a classical closed
form, due to Lorenz, of the generating function for r5(n) in the terms of {(s) and
a Dirichlet L-function, namely,

S 20 ge(s)La(s)

n

where L,(s) = Yo7, (£)n~° is the primitive L-function corresponding to the

Kronecker symbol (£). Define

_ i rn(n)

Simple closed forms for Ly (s) are known for N = 2,4,6 and 8, due to the known
explicit formula of ry(n) for these N (e.g. §91 in [12]); indeed the corresponding
g—series were known to Jacobi,

o 9
and  Rpn(s):= Z TJZL(:%)
n=1

La(s) = 4¢(s)L-4(s),

Li(s) = 8(1—47*)((s)¢(s — 1),

Lo(s) = 16¢(s —2)L_a(s) —4¢(s)L-4(s = 2),
Ls(s) = 16(1—2'7" +477°)((s)¢(s = 3).

Now applying an extension of Theorem 1 to these Ly, we obtain the following
closed forms for Ry (s):

Theorem 2. We have

(8-2373% —10-227% + 2175 4+ 1){(s — 2)(*(s — 1)((s)

Rals) =64 (1+21-)((2s — 2) ’
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(17— 32-27%) (s — 4) L2 (s — 2)((s)

Ro(s) = 1677532 (25— 4)
128 L_4(s—4)(%(s — 2)L_4(s)
T (lt4-279) : (25 — 4) == R >5,
and
Ra(s) = 256 (32-26-25 —3.2375 1 1)((s — 6)(%(s — 3)({(s) R(s) > T

(1+ 25-9)C(2s — 6)

An immediate application of Theorem 2 is to the estimation of the average
order of r%;(n). Using the usual hyperbola method of Dirichlet and a convolution
argument, we can prove that

Theorem 3. We have
(3) Z r2(n) = 4z logz + dax + O(z*/?),

n<lz

Z r2(n) = Waz® + O(2? log® z),

n<z

Z re(n) = Wez® 4+ O(z*)

n<z
and
> r3(n) = Wz + O(af)
n<z
where a == 2y + 2L (1) — 5('(2) + 31log2 — 1 =2.0166216 - - - and
1 N (N -1)

Wy = (N > 3).

(N-1)(A-2"M)T2(3N) ¢(N)
Here v is the Fuler’s constant.

This technique can be adjusted to handle all integers N > 2 except N = 3 as
below and so we establish all but the most difficult case of the following general
conjecture due to Wagon (see [4]):

Wagon’s Conjecture. For integer N >3, > _ r4(n) ~ WyzV~! as 2 — o0.

Despite lacking the closed form for Ry (s) in general for N > 5, we can use the
singular series formula for 7 (n) given by Hardy (see p.342 of [7] or p.155 of [6]),
which may be written as

L(N/2 - - G h’k N —2mihn —
) Dt K59 (CB) " om0,
(k=1

where G(h, k) = Ele e2mihi” /¥ ig the standard quadratic Gauss sum, to obtain

(4) 3 r3(m) = Waz" L+ 0@V 2 + 2N (N > 5),

n<lz
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The error term in (3) is not as good as the best known result. Indeed M. Kiihleitner
proved in [10] that

Z r2(n) = 4zlogz + 4ax + O(z'/?(log 2)'*/3 (loglog z)'/?).

n<lz

However, for N > 5, the estimate O(2V~2) in (4) in fact is the best possible.

We similarly study the number of representations by a binary quadratic forms.
Let ry, p(n) be the number of solutions of the binary quadratic form z? + Py* = n.
Define

e’} s 2
r n r n
Lop() =3 22 and Rops) = Y. AL
n=1 n=1

The closed forms of L2 p(s) have been studied by a number of people, particular by
Glasser, Zucker and Robertson (see [5] and [14]). In finding the exact evaluation of
lattice sums, they are interested in expressing a multiple sum, such as the generating
functions of 72 p(n), as a product of simple sums. As a result, plenty of closed forms
of Dirichlet series Y-, v 0)(@m® +bmn + en?)~* in terms of L-functions have
been found. One of the most interesting cases is when the binary quadratic forms
have disjoint discriminants, i.e, have only one form per genus. Then there are
simple closed forms for the corresponding Lo p(s) (see (9.2.8) in [1])

(5) Lop(s) =21 Z Le,u(8)L_spe, /u(8)

ulP
where P is an odd square-free number, ¢ is the number of distinct factors of P and
-1

€y = (7) Explicitly, (5) holds for all type one numbers. These include and may

comprise:
P =5,13,21,33,37,57,85,93,105, 133, 165, 177,253, 273, 345, 357, 385, 1365.

It is known that there are only finitely many such disjoint discriminants. We call
such P solvable. We have similar closed forms of L-functions for the quadratic
form z? + 2Py? with discriminant —8P (see (9.2.9) in [1]):

Lr2p(s) =2 Le,u(5)L _gpe,/u(s)
ulP
for the type two integers
P =1,3,5,11,15,21,29, 35,39, 51,65,95,105, 165, 231.

Again applying extensions of Theorem 1, we obtain closed forms for R, p(s) and
R2,2P(S).

Theorem 4. Let P be a solvable square-free integer and let t be the number of
distinct factors of P. We have for P respectively of type one and type two:

Ra,p(s) =227 Z szfﬂép;u;(5)L34Peuiu§/p;u;(S)C(QS)_I
p1,p2|P
1

€% ux T 145 —4Pey:,x [T ps B
(e |(5) - ()}
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and
Ra,2p(8) = 22079 Z Lfﬂwéu;u; (S)Lzspeﬂiué/;‘;u;(S)C(23)71
p1,p2|P
* * * * -1
% H {1+ [(euiuzﬂlﬂz) n <_8P€uiu§/ﬂ1ﬂz)]p_s}
p p
p|2P

where ¢, = (1) and 7 = ui/ (1, 12).
In particular, the prime cases provide:

Corollary 5. We have

2¢*(s) L2 45(s) 2L35(s)L2.4(s)
(T+275) (1 +p~)¢(2s) (1 —27°)(1+p~*)((2s)
for p=5,13,37, while

Rap(s) =

_ AC(s)L24(s)
Faald) = @ 2y
Similarly,
Raan(s) = 2¢%(5)L2g,(s) 212 (s)L3(s)

(1+27) 1 +p~)¢(2s) (1 —27%)(1 —p9)¢(2s)
for p = 3,11 while

20%(s)L? 5,(s) 2L7(s)L? 5(s)
(T+275)1+p*)C(2s)  (1-27%)(1—p *)C(2s)

Ra,2p(8) =

for p=>5,29.

Closed forms for £ p(s) are also accessible for some P other than those of type
one or type two. For example, (see Table VI of [5]) one has

L23(s) = (2+4'7°) ((s)L3(s)
and hence we obtain
142725 (((s) L_3(s))”
1+3-¢ ¢(2s)

We may also derive many formulae for non-square free integers via modular
transformations [1]. We contain ourselves with the simplest example which is

42270+ 2072 (((s) L_4(s))?
1+2-3 ¢(2s)
as a consequence of a quadratic transformation leading to
52’4(8) = (2_1 —971-s + 4_8)£2 (S)

There are some simple closed forms of the generating functions for more general
binary quadratic forms found in [5]. Let

(6) Ra,3(s) =4

R2,4(S) =

. 1 > T'(a,b,c) (n)
Laale) = Z (@m? + bmn + cn?)® Z ns
(n,m)#(0,0) n=1
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2
and Rgp,0)(s) == > o2y T(‘“’n% where r(4 5.¢) (n) is the number of representations

of n by the quadratic form ax? + bry + cy?. Then, we have (e.g. (26) of [15])
D Liape(s) = w(D)((s)Lp(s)

h(D)
where the sum is taken over the h(D) inequivalent reduced quadratic forms of
discriminant D := b — 4ac and w(—3) = 6,w(—4) = 4 and w(D) = 2 for D < —4.
In particular, for ¢ = 2,3,5,11,17,41, h(D) = 1 and the result is especially simple:

C(LLC) (8) = ZC(S)LD (8)

Hence from Theorem 1, we have

4(¢(s)Lp(s))?
(1+|D|~#)¢(2s)
with similar formulae for (a,b,c¢) = (1,1,1) and (1,0,1
Encyclopedia of Integer Sequences
http://www.research.att.com/ "njas/sequences/

we discover that the sequence 2,3,5,11,17,41 is exactly the so-called Euler “lucky”
numbers which are the numbers n such that m — m? —m + n has prime values for
m=20,---,n—1.

Applying standard complex integration methods to Rz p(s) and Raap(s), we
derive the asymptotic formula

R(l,l,c)( )

). Thanks to the On-Line

Theorem 6. Let P be a solvable square-free integer. Let x > 1 and € > 0. We
have for either N = P of type one or N = 2P of type two:

2
Z 7'2,N(’I’L)2 = % H ITP]_ (:U logw + Oz(N)l‘) + O(N%-f‘ex%-i‘e)
n<z p|2N

where the implicit constants are independent of both x and P and

logp —4N(1) 12 ,
=2+ Z - =@ -1
p\QN L 4N(]-) i

and EMH is the summation over all prime factors of n.
Akin to Wagon’s conjecture, we make the following conjecture.

Quadratic Conjecture. For any square-free P,

2p
ngp ~ — H zlogx
n<z P |2Pp+1

as & — 0.
In view of Theorem 6, (3) and (6), our conjecture is true for solvable P and for
P =1,3. We have also confirmed it for P = 7 and 15 from the representations of

Lo7(s) =2 (1 =25 +21725)¢(s)L_7(s)
and

Lo5(s) = (1 —2'75 +2'729)((s) L5 (s) + (1 +2' 7% +2'72*)L_3(s) Ls(s)
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again given in [5], which leads to

_ (=827 4+ 27%) (((s) L1 (s))®
Rar) =Y smer s ey
and
R2715(8) = 2(1 —3-27°+ 22723) (C(S)L715(8))2

(I1+2=5)Q1+35)(1+59) ¢(2s)
2(1+3-272+227%)  (L_3(s)Ls(s))”
Ta-zi-30-57  (@s)
and may be analyzed by the methods above.
For the negative P, we have studied only the case P = —1. By the elementary
formula due to Sierpinski [16]

ra,-1(n) = 2d(n) — 4d(3) + 4d(3)

we obtain
Lo_1(s) = 2(1 — 2175 +2172%)((s)?
and
(1-3-27%+4-2725)((s)*
(14 2-%)¢(2s)

where d(n) is the divisor function and d(z) = 0 if z is not an integer.

R27_1(S) =

We also studied £y (s), for all N > 2, and obtained a Bessel-series in ry_1(m):

rv(n) _ 2NT(s—22)
= — L - 2 2 _N 1
Ln(s) T;) e TeiD) " C(2s — N +1)
4N mstl mz® ry_1(m) n 3
K _n~_3(2 .
(7) + 1“(3+1)mz>0 e g v s—n=s nw/m)

Here K is the modified Bessel function of the second kind. This is especially at-
tractive for N = 3,5,7,9 since in these cases ry_1(n) is an explicit divisor function.

Most pleasantly, for ‘jellium’, which is the Wigner sum analogue of Madelung’s
constant, we have

£a(1/2) = —m + 3m Z s1nh2 7r\/_)

in which the exponential convergence is entlrely apparent.
Some similar identities are

L£5(3/2) = ——71' (1+3Z Smh2 )),
L:(5/2) = (1 +3 Z smh2 )> ;

Lo(7/2) = ——7r <1+3 > Smh2 )) ,
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and
Ry 4(2) = 8G?
where G := 3~ 5,(—1)" (2n + 1)~2 is Catalan’s constant.

For a survey of other rapidly convergent lattice sums of this type see [1] and [3].
Unfortunately we have not been able to extend this analysis to Ry(s).
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