help annotate
Contents Next: Glossary Up: Continued Fractions and Chaos Previous: Acknowledgments

[Annotate][Shownotes]


References

1
P. Billingsley. Ergodic Theory and Information. Wiley, New York, 1965.
[1] [2]

2
G. D. Birkhoff. Sur quelques courbes fermées remarquables. Bull. Soc. Math. France, 60:1--26, 1932.
[1]

3
L. Block, J. Guckenheimer, M. Misiurewicz, and L. Young. Periodic points and topological entropy of one dimensional maps. In Global Theory of Dynamical Systems, volume 819 of Springer Lecture Notes in Mathematics, pages 18--34. Springer-Verlag, 1979.
[1]

4
J. M. Borwein and P. B. Borwein. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York, 1987.
[1]

5
B. A. Cipra. Computer-drawn pictures stalk the wild trajectory. Science, 241:1162--1163, 1988.
[1]

6
Robert M. Corless, Gregory W. Frank, and J. Graham Monroe. Chaos and continued fractions. Physica D, 46:241--253, 1990.
[1]

7
Richard E. Crandall David H. Bailey, J. M. Borwein. On khinchin's constant, 1995.
[1]

8
R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Benjamin/Cummings, Menlo Park, 1985.
[1] [2] [3]

9
W. Gautschi. Efficient computation of the complex error function. SIAM J. Numer. Anal., 7(1):187--198, 1970.
[1]

10
J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.
[1] [2] [3]

11
G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1979.
[1] [2] [3] [4]

12
Peter Henrici. Applied and Computational Complex Analysis, volume 2. Wiley, New York, 1977.
[1]

13
K. Ikeda and M .Mizuno. Frustrated instabilities in nonlinear optical resonators. Phys. Rev. Letters, 53(14):1340--1343, 1984.
[1]

14
W. B. Jones and W. J. Thron. Continued Fractions: Analytic Theory and Applications. Addison-Wesley, Reading, 1980.
[1]

15
A. Y. Khintchin. Continued Fractions. P. Noordhoff, Groningen, 1963.
[1] [2]

16
Donald E. Knuth. The Art of Computer Programming, vol 2. Addison-Wesley, Stanford, CA, 1973.

17
T. Y. Li and J. A. Yorke. Period three implies chaos. Amer. Math. Monthly, 82:985--992, 1975.
[1] [2]

18
R. Mañé. Ergodic Theory and Differentiable Dynamics. Springer-Verlag, Berlin, 1987.
[1] [2] [3]

19
I. Niven. Irrational Numbers, volume 11 of Carus Mathematical Monograph Series. MAA, New Jersey, 1956.
[1]

20
C. D. Olds. Continued Fractions. Random House, Toronto, 1963.
[1] [2] [3] [4] [5] [6]

21
V. I. Osledec. A multiplicative ergodic theorem: Liapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19:197--231, 1968.

22
H. Poincaré. Les Méthodes Nouvelles de la Mecanique Céleste. Gauthier-Villars, 1899.
[1]

23
John R. Rice. Numerical Methods, Software and Analysis: IMSL Reference Edition. McGraw-Hill, 1983.
[1]

24
A. N. Saarkovskii. Coexistence of cycles of a continuous map of a line into itself. Ukr. Math. Z., 16:61--71, 1964.
[1]

25
M. R. Schroeder. Number Thoery in Science and Communication. Springer-Verlag, Berlin, 1984.
[1] [2]

26
H. M. Stark. An explanation of some exotic continued fractions found by brillhart. In A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory (Proc. Science Research Council Atlas Symposium #2, Oxford), pages 21--35. Academic Press, 1971.
[1]

27
P. Stefan. A theorem of saarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Comm. Math. Phys., 54:237--248, 1977.
[1]

28
S. Ushiki. Central difference scheme and chaos. Physica D, 4:407--424, 1982.
[1]

29
M. Yamaguti and S. Ushiki. Chaos in numerical analysis of ordinary differential equations. Physica D, 3(3):618--626, 1981.
[1]



help annotate
Contents Next: Glossary Up: Continued Fractions and Chaos Previous: Acknowledgments