Contents
Next: Glossary
Up: Continued Fractions and Chaos
Previous: Acknowledgments
References
- 1
-
P. Billingsley.
Ergodic Theory and Information.
Wiley, New York, 1965.
[1] [2]
- 2
-
G. D. Birkhoff.
Sur quelques courbes fermées remarquables.
Bull. Soc. Math. France, 60:1--26, 1932.
[1]
- 3
-
L. Block, J. Guckenheimer, M. Misiurewicz, and L. Young.
Periodic points and topological entropy of one dimensional maps.
In Global Theory of Dynamical Systems, volume 819 of
Springer Lecture Notes in Mathematics, pages 18--34. Springer-Verlag, 1979.
[1]
- 4
-
J. M. Borwein and P. B. Borwein.
Pi and the AGM: A Study in Analytic Number Theory and
Computational Complexity.
Wiley, New York, 1987.
[1]
- 5
-
B. A. Cipra.
Computer-drawn pictures stalk the wild trajectory.
Science, 241:1162--1163, 1988.
[1]
- 6
-
Robert M. Corless, Gregory W. Frank, and J. Graham Monroe.
Chaos and continued fractions.
Physica D, 46:241--253, 1990.
[1]
- 7
-
Richard E. Crandall David H. Bailey, J. M. Borwein.
On khinchin's constant, 1995.
[1]
- 8
-
R. L. Devaney.
An Introduction to Chaotic Dynamical Systems.
Benjamin/Cummings, Menlo Park, 1985.
[1] [2] [3]
- 9
-
W. Gautschi.
Efficient computation of the complex error function.
SIAM J. Numer. Anal., 7(1):187--198, 1970.
[1]
- 10
-
J. Guckenheimer and P. Holmes.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields.
Springer-Verlag, New York, 1983.
[1] [2] [3]
- 11
-
G. H. Hardy and E. M. Wright.
An Introduction to the Theory of Numbers.
Oxford University Press, 5th edition, 1979.
[1] [2] [3] [4]
- 12
-
Peter Henrici.
Applied and Computational Complex Analysis, volume 2.
Wiley, New York, 1977.
[1]
- 13
-
K. Ikeda and M .Mizuno.
Frustrated instabilities in nonlinear optical resonators.
Phys. Rev. Letters, 53(14):1340--1343, 1984.
[1]
- 14
-
W. B. Jones and W. J. Thron.
Continued Fractions: Analytic Theory and Applications.
Addison-Wesley, Reading, 1980.
[1]
- 15
-
A. Y. Khintchin.
Continued Fractions.
P. Noordhoff, Groningen, 1963.
[1] [2]
- 16
-
Donald E. Knuth.
The Art of Computer Programming, vol 2.
Addison-Wesley, Stanford, CA, 1973.
- 17
-
T. Y. Li and J. A. Yorke.
Period three implies chaos.
Amer. Math. Monthly, 82:985--992, 1975.
[1] [2]
- 18
-
R. Mañé.
Ergodic Theory and Differentiable Dynamics.
Springer-Verlag, Berlin, 1987.
[1] [2] [3]
- 19
-
I. Niven.
Irrational Numbers, volume 11 of Carus Mathematical
Monograph Series.
MAA, New Jersey, 1956.
[1]
- 20
-
C. D. Olds.
Continued Fractions.
Random House, Toronto, 1963.
[1] [2] [3] [4] [5] [6]
- 21
-
V. I. Osledec.
A multiplicative ergodic theorem: Liapunov characteristic numbers for
dynamical systems.
Trans. Moscow Math. Soc., 19:197--231, 1968.
- 22
-
H. Poincaré.
Les Méthodes Nouvelles de la Mecanique Céleste.
Gauthier-Villars, 1899.
[1]
- 23
-
John R. Rice.
Numerical Methods, Software and Analysis: IMSL Reference
Edition.
McGraw-Hill, 1983.
[1]
- 24
-
A. N. Saarkovskii.
Coexistence of cycles of a continuous map of a line into itself.
Ukr. Math. Z., 16:61--71, 1964.
[1]
- 25
-
M. R. Schroeder.
Number Thoery in Science and Communication.
Springer-Verlag, Berlin, 1984.
[1] [2]
- 26
-
H. M. Stark.
An explanation of some exotic continued fractions found by brillhart.
In A. O. L. Atkin and B. J. Birch, editors, Computers in Number
Theory (Proc. Science Research Council Atlas Symposium #2, Oxford), pages
21--35. Academic Press, 1971.
[1]
- 27
-
P. Stefan.
A theorem of saarkovskii on the existence of periodic orbits of
continuous endomorphisms of the real line.
Comm. Math. Phys., 54:237--248, 1977.
[1]
- 28
-
S. Ushiki.
Central difference scheme and chaos.
Physica D, 4:407--424, 1982.
[1]
- 29
-
M. Yamaguti and S. Ushiki.
Chaos in numerical analysis of ordinary differential equations.
Physica D, 3(3):618--626, 1981.
[1]
Contents
Next: Glossary
Up: Continued Fractions and Chaos
Previous: Acknowledgments