Contents
Next: About this document
Up:The Search for a
Previous: Epilogue
References
[an error occurred while processing this directive]
- 1
- R. P. Anstee, M. Hall, Jr., and J. G. Thompson,
``Planes of order 10 do not have a collineation of order 5,'' J.
Comb. Theory, Series A, Vol. 29(1980), p. 39--58.
[1]
- 2
- E. F. Assmus, Jr. and H. F. Mattson, Jr., ``On the
Possibility of a Projective Plane of Order 10,'' Algebraic Theory
of Codes II, Air Force Cambridge Research Laboratories Report
AFCRL-71-0013, Sylvania Electronic Systems, Needham Heights,
Mass., 1970.
[1]
- 3
- K. Appel and W. Haken, ``Every planar map is
four-colorable,'' Bull. Amer. Math. Soc., Vol. 82(1976),
p. 711--712.
[1]
- 4
- R. C. Bose, ``On the application of the properties of
Galois fields to the problem of construction of
hyper-Graeco-Latin squares,'' Sankhyã, Vol. 3(1938),
p. 323--338.
[1]
- 5
- R. C. Bose and S. S. Shrikhande, ``On the falsity of
Euler's Conjecture about the non-existence of two orthogonal
latin squares of order 4t+2,'' Proc. Nat. Acad. Sci. U. S. A.
Vol. 45(1959), p. 734--737.
[1]
- 6
- R. C. Bose, S. S. Shrikhande, and E. T. Parker,
``Further results on the construction of mutually orthogonal
latin squares and the falsity of Euler's conjecture,'' Canad. J.
Math. Vol. 12(1960), p. 189--203.
[1]
- 7
- R. H. Bruck and H. J. Ryser, ``The non-existence of
certain finite projective planes,'' Can. J. Math., Vol. 1(1949),
p. 88--93.
[1]
- 8
- A. Bruen and J. C. Fisher, ``Blocking Sets, k-arcs and
Nets of Order Ten,'' Advances in Math., Vol. 10(1973),
p. 317--320.
[1]
- 9
- J. L. Carter, ``On the Existence of a Projective Plane
of Order Ten,'' Ph. D. thesis, Univ. of Calif., Berkeley, 1974.
[1]
- 10
- S. Chowla and H. J. Ryser, ``Combinatorial problems,''
Can. J. Math., Vol. 2(1950), p. 93--99.
[1]
- 11
- R. H. F. Denniston, ``Non-existence of a Certain
Projective Plane,'' J. Austral. Math. Soc., Vol. 10(1969),
p. 214--218.
[1]
- 12
- L. Euler, ``Recherches sur une nouvelle espèce de
quarrés magiques,'' Verh. Zeeuwsch. Genootsch. Wetensch.
Vlissengen Vol. 9(1782), p. 85--239.
[1]
- 13
- M. Hall, Jr. and H. J. Ryser, ``Normal completions of
incidence matrices,'' Amer. J. Math, Vol. 76(1954), p. 581--589.
[1]
- 14
- M. Hall, Jr., ``Configurations in a plane of order 10,''
Ann. Discrete Math., Vol. 6(1980), p. 157--174.
[1] [2]
- 15
- Z. Janko and T. van Trung, ``Projective planes of order
10 do not have a collineation of order 3,'' J. Reine Angew.
Math., Vol. 325(1981), p. 189--209.
[1]
- 16
- D. E. Knuth, ``Estimating the Efficiency of Backtrack
Programs,'' Mathematics of Computations, Vol. 29(1975),
p. 121--136.
[1]
- 17
- C. W. H. Lam, L. Thiel, and S. Swiercz, ``A feasibility
study of a search for ovals in a projective plane of order 10,''
Proceeding of the Ninth Australian Conference on Combinatorial
Mathematics, Springer-Verlag Lecture Notes in Mathematics,
Vol. 952(1082), p. 349--352.
[1]
- 18
- C. W. H. Lam, L. Thiel, S. Swiercz, and J. McKay, ``The
Nonexistence of ovals in a projective plane of order 10,''
Discrete Mathematics, Vol. 45(1983), p. 319--321.
[1]
- 19
- C. Lam, S. Crossfield, and L. Thiel, ``Estimates of a
computer search for a projective plane of order 10,'' Congressus
Numerantium, Vol. 48(1985), p. 253--263.
[1] [2] [3]
- 20
- C. W. H. Lam, L. Thiel, and S. Swiercz, ``The
Nonexistence of Code Words of Weight 16 in a Projective Plane of
Order 10,'' J. of Combinatorial Theory, Series A, Vol. 42(1986),
p. 207--214.
[1]
- 21
- C. W. H. Lam, L. H. Thiel, and S. Swiercz, ``The
Non-existence of Finite Projective Planes of Order 10,'' to
appear.
[1] [2]
- 22
- J. MacWilliams, N. J. A. Sloane, and J. G.
Thompson, ``On the existence of a projective plane of order 10,''
J. Combinatorial Theory, Sec. A., Vol. 14(1973), p. 66--78.
[1]
- 23
- E. T. Parker, ``Construction of some sets of mutually
orthogonal Latin squares,'' Proc. Amer. Math. Soc.,
Vol. 10(1959), p. 946--949.
[1]
- 24
- E. T. Parker, ``Orthogonal Latin squares,'' Proc.
Nat. Acad. Sci. U. S. A., Vol. 45(1959), p. 859--862.
[1]
- 25
- H. J. Ryser, ``A note on a combinatorial problem,''
Proc. Amer. Math. Soc., Vol. 1(1950), p. 422--424.
[1]
- 26
- H. J. Ryser, ``Combinatorial Mathematics,'' The Carus
Mathematical Monographs, Math. Assoc. of America, 1963.
[1] [2]
- 27
- G. Tarry, ``Le problème des 36 officiers,'' C. R.
Assoc. Fran. Av. Sci. Vol. 1(1900), p. 122--123, Vol. 2(1901),
p. 170--203.
[1]
- 28
- J. G. Thompson, ``Fixed Point Free Involutions and
Finite Projective Planes,'' Durham Conference on Finite Groups,
ed. M. Collins, 1978.
[1]
- 29
- J. G. Thompson, ``Ovals in a projective plane of
order 10,'' unpublished.
[1]
- 30
- J. G. Thompson, ``Extremal 19-sets in the
-code of a projective plane of order 10,'' unpublished.
[1]
- 31
- L. H. Thiel, C. Lam, and S. Swiercz, ``Using a CRAY-1
to perform backtrack search,'' Proc. of the Second International
Conference on Supercomputing, San Francisco, USA, Vol. III(1987),
p. 92--99.
[1]
- 32
- O. Veblen, ``A system of axioms for geometry,'' Trans.
Amer. Math. Soc., Vol. 5(1904), p. 343--384.
[1] [2]
- 33
- O. Veblen and W. H. Bussey, ``Finite Projective
Geometries,'' Trans. Amer. Math. Soc., Vol. 7(1906), p. 241--259.
[1]
- 34
- O. Veblen and J. H. M. Wedderburn, ``Non-Desarguesian
and non-Pascalian Geometries,'' Trans. Amer. Math. Soc.,
Vol. 8(1907), p. 379--388.
[1]
- 35
- R. J. Walker, ``An Enumerative Technique for a Class
of Combinatorial Problems,'' Proc. AMS Symp. Appl. Math.,
Vol. X(1960), p. 91--94.
[1]
- 36
- S. H. Whitesides, ``Collineations of projective
planes of order 10,'' Parts I and II, J. Comb. Theory, Series A,
Vol. 26(1979), p. 249--277.
[1]