help annotate
Contents Next: About this document Up:The Search for a Previous: Epilogue

[Annotate][Shownotes]


References


[Annotate][Shownotes]


[an error occurred while processing this directive]
1
R. P. Anstee, M. Hall, Jr., and J. G. Thompson, ``Planes of order 10 do not have a collineation of order 5,'' J. Comb. Theory, Series A, Vol. 29(1980), p. 39--58.
[1]

2
E. F. Assmus, Jr. and H. F. Mattson, Jr., ``On the Possibility of a Projective Plane of Order 10,'' Algebraic Theory of Codes II, Air Force Cambridge Research Laboratories Report AFCRL-71-0013, Sylvania Electronic Systems, Needham Heights, Mass., 1970.
[1]

3
K. Appel and W. Haken, ``Every planar map is four-colorable,'' Bull. Amer. Math. Soc., Vol. 82(1976), p. 711--712.
[1]

4
R. C. Bose, ``On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares,'' Sankhyã, Vol. 3(1938), p. 323--338.
[1]

5
R. C. Bose and S. S. Shrikhande, ``On the falsity of Euler's Conjecture about the non-existence of two orthogonal latin squares of order 4t+2,'' Proc. Nat. Acad. Sci. U. S. A. Vol. 45(1959), p. 734--737.
[1]

6
R. C. Bose, S. S. Shrikhande, and E. T. Parker, ``Further results on the construction of mutually orthogonal latin squares and the falsity of Euler's conjecture,'' Canad. J. Math. Vol. 12(1960), p. 189--203.
[1]

7
R. H. Bruck and H. J. Ryser, ``The non-existence of certain finite projective planes,'' Can. J. Math., Vol. 1(1949), p. 88--93.
[1]

8
A. Bruen and J. C. Fisher, ``Blocking Sets, k-arcs and Nets of Order Ten,'' Advances in Math., Vol. 10(1973), p. 317--320.
[1]

9
J. L. Carter, ``On the Existence of a Projective Plane of Order Ten,'' Ph. D. thesis, Univ. of Calif., Berkeley, 1974.
[1]

10
S. Chowla and H. J. Ryser, ``Combinatorial problems,'' Can. J. Math., Vol. 2(1950), p. 93--99.
[1]

11
R. H. F. Denniston, ``Non-existence of a Certain Projective Plane,'' J. Austral. Math. Soc., Vol. 10(1969), p. 214--218.
[1]

12
L. Euler, ``Recherches sur une nouvelle espèce de quarrés magiques,'' Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen Vol. 9(1782), p. 85--239.
[1]

13
M. Hall, Jr. and H. J. Ryser, ``Normal completions of incidence matrices,'' Amer. J. Math, Vol. 76(1954), p. 581--589.
[1]

14
M. Hall, Jr., ``Configurations in a plane of order 10,'' Ann. Discrete Math., Vol. 6(1980), p. 157--174.
[1] [2]

15
Z. Janko and T. van Trung, ``Projective planes of order 10 do not have a collineation of order 3,'' J. Reine Angew. Math., Vol. 325(1981), p. 189--209.
[1]

16
D. E. Knuth, ``Estimating the Efficiency of Backtrack Programs,'' Mathematics of Computations, Vol. 29(1975), p. 121--136.
[1]

17
C. W. H. Lam, L. Thiel, and S. Swiercz, ``A feasibility study of a search for ovals in a projective plane of order 10,'' Proceeding of the Ninth Australian Conference on Combinatorial Mathematics, Springer-Verlag Lecture Notes in Mathematics, Vol. 952(1082), p. 349--352.
[1]

18
C. W. H. Lam, L. Thiel, S. Swiercz, and J. McKay, ``The Nonexistence of ovals in a projective plane of order 10,'' Discrete Mathematics, Vol. 45(1983), p. 319--321.
[1]

19
C. Lam, S. Crossfield, and L. Thiel, ``Estimates of a computer search for a projective plane of order 10,'' Congressus Numerantium, Vol. 48(1985), p. 253--263.
[1] [2] [3]

20
C. W. H. Lam, L. Thiel, and S. Swiercz, ``The Nonexistence of Code Words of Weight 16 in a Projective Plane of Order 10,'' J. of Combinatorial Theory, Series A, Vol. 42(1986), p. 207--214.
[1]

21
C. W. H. Lam, L. H. Thiel, and S. Swiercz, ``The Non-existence of Finite Projective Planes of Order 10,'' to appear.
[1] [2]

22
J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, ``On the existence of a projective plane of order 10,'' J. Combinatorial Theory, Sec. A., Vol. 14(1973), p. 66--78.
[1]

23
E. T. Parker, ``Construction of some sets of mutually orthogonal Latin squares,'' Proc. Amer. Math. Soc., Vol. 10(1959), p. 946--949.
[1]

24
E. T. Parker, ``Orthogonal Latin squares,'' Proc. Nat. Acad. Sci. U. S. A., Vol. 45(1959), p. 859--862.
[1]

25
H. J. Ryser, ``A note on a combinatorial problem,'' Proc. Amer. Math. Soc., Vol. 1(1950), p. 422--424.
[1]

26
H. J. Ryser, ``Combinatorial Mathematics,'' The Carus Mathematical Monographs, Math. Assoc. of America, 1963.
[1] [2]

27
G. Tarry, ``Le problème des 36 officiers,'' C. R. Assoc. Fran. Av. Sci. Vol. 1(1900), p. 122--123, Vol. 2(1901), p. 170--203.
[1]

28
J. G. Thompson, ``Fixed Point Free Involutions and Finite Projective Planes,'' Durham Conference on Finite Groups, ed. M. Collins, 1978.
[1]

29
J. G. Thompson, ``Ovals in a projective plane of order 10,'' unpublished.
[1]

30
J. G. Thompson, ``Extremal 19-sets in the -code of a projective plane of order 10,'' unpublished.
[1]

31
L. H. Thiel, C. Lam, and S. Swiercz, ``Using a CRAY-1 to perform backtrack search,'' Proc. of the Second International Conference on Supercomputing, San Francisco, USA, Vol. III(1987), p. 92--99.
[1]

32
O. Veblen, ``A system of axioms for geometry,'' Trans. Amer. Math. Soc., Vol. 5(1904), p. 343--384.
[1] [2]

33
O. Veblen and W. H. Bussey, ``Finite Projective Geometries,'' Trans. Amer. Math. Soc., Vol. 7(1906), p. 241--259.
[1]

34
O. Veblen and J. H. M. Wedderburn, ``Non-Desarguesian and non-Pascalian Geometries,'' Trans. Amer. Math. Soc., Vol. 8(1907), p. 379--388.
[1]

35
R. J. Walker, ``An Enumerative Technique for a Class of Combinatorial Problems,'' Proc. AMS Symp. Appl. Math., Vol. X(1960), p. 91--94.
[1]

36
S. H. Whitesides, ``Collineations of projective planes of order 10,'' Parts I and II, J. Comb. Theory, Series A, Vol. 26(1979), p. 249--277.
[1]