1.241 TRILLION DIGITS OF 1.241 TRILLION DIGITS OF p


Between September and December 2002 (over about 600 hours on a HITACHI SR8000/MP machine with 1TB storage) Yasumasa Kanada, and a team of ten, computed 1.03 ×1012 hexadecimal digits, using both

p
=
48 arctan( 1/49 ) +128 arctan æ
ç
è
1
57
ö
÷
ø
-20 arctan æ
ç
è
1
239
ö
÷
ø
+48 arctan æ
ç
è
1
110443
ö
÷
ø
and
p
=
176 arctan æ
ç
è
1
57
ö
÷
ø
+28 arctan æ
ç
è
1
239
ö
÷
ø
-48 arctan æ
ç
è
1
682
ö
÷
ø
+ 96 arctan æ
ç
è
1
12943
ö
÷
ø

This was converted to 1.24 ×1012 decimal digits. Kanada estimates the method is about twice the speed of the AGM methods he was previously using - and has other advantages to make such a huge computation feasible.


File translated from TEX by TTH, version 2.20.
On 15 Dec 2002, 19:22.