## Index of tables

#### Index to all the tables

keywords = tables of real numbers, mathematical constants, pi, gamma, Catalan,sqrt(2).

Here is a set of over 400 tables.

Each table is numbered Rnnnn where nnnn goes from 0000 to nnnn. Most of the functions used here have the same notations than MapleV. To know what function is what just type ?inifcns in a Maple session. F12 denotes de Farey fractions of denominator <= 12 , {1/2,1/3,2/3,...,11/12}. F24 denotes de Farey fractions of order 24 (or with denominators <=24). pFq denotes the generalized hypergeometric function. M(a,b,z) denotes the Kummer function or the confluent Hypergeometric function. J(p,q) denotes the real part of exp(Pi*2*p/q). J1/2(p/q) denotes the Bessel function of fractional order (here it's 1/2). d0(n) denotes the number of divisors of n. d1(n) denotes the sum of the divisors of n. Li2(x) denotes the Dilogarithm function : sum(x**n/n**2,n=1..infinity). Ti2(x) denotes the Tangent Integral : Sum((-1)**(n+1)/(2*k+1).... Psi(x) is equal to G'(x)/G(x) where G(x) is the GAMMA function. Psi(1,x) is the derivative of Psi(x), Psi(n,x) the n'th derivative. gamma is the gamma constant (0.5772156649...) and GAMMA is the GAMMA FUNCTION. Catalan is the Catalan Constant : sum((-1)^i/(2*i+1)^2,i=0..infinity); approx. 0.9159655 F(a1,a2,..an;b1,b2,...,bn;x) denotes the generalized hypergeometric function. 1/sum(a,b,c), denotes the infinite sum of the inverse of a 2nd degree pol. having (a,b,c) as finite difference coefficients. For example (1,3,2) is equivalent ot n**2. 1/sum(a,b,c,d) , same thing for 3rd degree polynomial. f(T(n,x)/2**n), is the iterations with T(n,x), chebyshev polynomial of degree n, f( ), is the sign function and x is the initial value. Pi(a*n+b), is the real number constructed by taking the digits in the number Pi (in base 10), and choosing the digits of rank a*n+b, for various a,b integers. Pi(2*n+1) is the real number obtained by choosing the digits of odd index in Pi. various numbers where taken, sqrt(2), sqrt(5), ... ------------------------------------------------------------------------ 0000 Bases constants, Pi, e, sqrt(2), etc...
0001 Mixed constants with 5 operations
0002 Sum(1/(b**n*P(n)),n=1..infinity), P(n) : 2nd and 3rd degree polynomials.
0003 Sum(1/(b**n+P(n)),n=1..infinity), P(n) : 2nd and 3rd degree polynomials.
0004 Transcendental equations with elementary functions.
0005 Decimal expansions of Pi, E, gamma, sqrt(2) and Zeta(3).
0006 Inverse of primes, extended table.
0007 Neil J.A. Sloane's own table of real numbers.
0008 Sum(P(n)/n**n,n=1..infinity), P(n) up to 3rd degree polynomials.
0009 Sum(P(n)/n!,n=1..infinity), P(n) up to 3rd degree polynomials.
0010 Sum(P(n)/(n!+1),n=1..infinity), P(n) up to 3rd degree polynomials.
0011 Sum(P(n)/(n!+2),n=1..infinity), P(n) up to 3rd degree polynomials.
0012 Sum(P(n)/binomial(2*n,n),n=1..infinity), P(n) up to 3rd degree polynomials.
0013 Sum(P(n)/(n**(n-1)),n=1..infinity), P(n) up to 3rd degree polynomials.
0014 Sum(P(n)/(n**(n-2)),n=1..infinity), P(n) up to 3rd degree polynomials.
0015 Sum(P(n)*n!/n**n,n=1..inf) , P(n) up to 3rd degree polynomials.
0016 Sum((-1)**(n+1)/(P(n)*2**n),n=1..inf), P(n) up to 3rd degree polynomials.
0017 arctan(p/q) p/q in F24 0018 cos(Pi*p/q) F24 (0,1/2)
0018 cos(Pi*p/q) with p/q small rationals < 1/2 and in F60.
0019 cosh(n+p/q) n=0..23 and p/q (m/12)
0020 sinh(n+p/q) n=0..23 and p/q (m/12)
0021 cos(n) n=1..100
0022 J3/2(n+p/q) Bessel functions n=0..23 and p/q (m/12)
0023 sum(d0(n)*x**n,n=1..inf.), d0(n) =  nb of divisors of n x in F24
0024 exp(J(p,q)) J(p,q)= roots of 1
0025 exp(cos(Pip/q)) p/q in F24 (0,1/2)
0026 exp(n) and exp(2**n) normalized;  n in N
0027 exp(Pip/q) p/q in F24
0028 exp(p/q) p/q in F24
0029 exp(sin(Pip/q)) p/q in F24 (0,1/2)
0030 exp(Pisqrt(p/q))) p/q in F24
0031 exp(tan(Pip/q)) p/q in F24
0032 GAMMA(p/q) p/q in F60
0033 Li2(p/q) p/q in F24
0034 Li3(p/q) p/q in F24
0035 Li4(p/q) p/q in F24
0036 Li5(p/q) p/q in F24
0037 ln(p/q) p/q in F24
0038 sum(mu(n)*x**n,n=1..inf.) : mu(n) Mobius function , X in F24
0039 Pi^n and Pi^(2^n) normalized ; n in N
0040 sin(Pi*p/q) p/q in F24 (0,1/2)
0041 exp(Pi*sqr(n)/4) n=1..360
0042 tanh(n) n=1..24
0043 tanh(p/q) p/q in F24
0044 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 2, X in F24 with sign function f.
0045 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 3, X in F24 with sign function f.
0046 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 4, X in F24 with sign function f.
0047 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 5, X in F24 with sign function f.
0048 tan(Pi*p/q) p/q in F24 and p/q < 1/2
0049 tan(n) n =1 ..100
0050 Ti2(p/q) p/q in F24: Tangent Integral
0051 Ti3(p/q) p/q in F24: Tangent Integral
0052 Ti4(p/q) p/q in F24: Tangent Integral
0053 Ti5(p/q) p/q in F24: Tangent Integral
0054 x/exp(x)-1 x in F24: Tangent Integral
0055 Zeta(n) and Zeta(n+p/q) p/q = [1/2,1/3,2/3...
0056 sqrt(n) n=2..999
0057 sin(n) n=1..100
0058 Psi(p/q) p/q in F24
0059 Ei(p/q) n=0..23 and p/q (m/12)
0060 exp(H(n)): H(n): Harmonic numbers, n=1..100
0061 n**(p/q)
0062 Sum((-1)**(n+1)/(P(n)*binomial(2*n,n)),n=1..inf), P(n) up to 3rd degree polynomials.
0063 Sum(P(n)/Fibonacci(n),n=1..infinity), P(n) up to 3rd deg. polynomials.
0064 Sum(P(n)/(Fibonacci(n)+1),n=1..infinity), P(n) up to 3rd deg. pol.
0065 log(H(n)): H(n): Harmonic numbers, n=1..100
0066 exp(cos(n)) n=1..100
0067 exp(sin(n)) n=1..100
0068 exp(tg(n)) n=1..100
0069 Sum( d2(n)X^n): d2(n) sum of squares of divisors of n, X in F24
0070 Sum( d1(n)X^n): d1(n) sum of divisors of n, X in F24
0071 J0(n+p/q) Bessel function, n=0..23 and p/q (m/12)
0072 J1/2(n+p/q) Bessel function, n=0..23 and p/q (m/12)
0073 J1(n+p/q) Bessel function, n=0..23 and p/q (m/12)
0074 J2(n+p/q) Bessel function, n=0..23 and p/q (m/12)
0075 tan(Xn)=Xn+1: x1=1 n=1..100
0076 cos(Xn)=Xn+1 n=1..238
0077 H(n)-log(n)-g n=1..1000
0078 Ci(p/q) n=0..23 and p/q (m/12)
0079 Si(p/q) n=0..23 and p/q (m/12)
0080 log(abs(Xn))=Xn+1: x1=log(2) n=1..256
0081 sqrt(sqrt(exp(Xn)))=Xn+1: X1=exp(1) n=1..90
0082 exp(1/Xn)=Xn+1 X1=exp(1) n=1..165
0083 1/exp(Xn)=Xn+1 X1=exp(-1) n=168
0084 log(n)+gamma n=1..1000
0085 log(n) n=2..1000
0086 LOG10(n) n=2..99
0087 log(Pi*p/q) p/q in F24
0088 Pi**(p/q) p/q in F24
0089 (e+Pi)**(p/q) p/q in F24
0090 (ePi)**(p/q) p/q in F24
0091 (Pi/e)**(p/q) p/q in F24
0092 K**n: K is a base constant
0093 K**n: K is a base constant
0094 log(n!) n=2..1000
0095 F120 (from 1/2 to 119/120) rational numbers
0096 F([1/3,2/3],[2];p/q) p/q in F24
0097 Pi(an+b): arith. progression (a*n+b) in the digits of Pi
0098 Pi(an+b): arith. progression (a*n+b) in the digits of Pi
0099 e(an+b): arith. progression (a*n+b) in the digits of exp(1)
0100 e(an+b): arith. progression (a*n+b) in the digits of exp(1)
0101 Stieltjes Constants: for 1/GAMMA(x), first 52 values.
0102 e(an+b): arith. progression (a*n+b) in the digits of exp(1)
0103 gamma(an+b): arith. progression (a*n+b) in the digits of gamma
0104 phi(an+b): arith. progression (a*n+b) in the digits of golden number.
0105 sqrt(10(an+b)) arith. progression (a*n+b) in the digits of sqrt(10)
0106 sqrt(2(an+b)) arith. progression (a*n+b) in the digits of sqrt(2)
0107 sqrt(5(an+b)) arith. progression (a*n+b) in the digits of sqrt(5)
0108 sum(1/(an+b)!,n=1..infinity), integer values of a,b
0109 sum(1/(an+b)!,n=1..infinity), integer values of a,b
0110 lnGAMMA(p/q) p/q in F24
0111 F([1,1,1/2],[3/2,3/2];p/q) p/q in F24
0112 F([1/2,1/2,1/2],[3/2,3/2];p/q) p/q in F24
0113 F([1/2,1/2,1],[3/2,3/2;p/q) p/q in F24
0114 F([1,1,1],[2,3/2];p/q) p/q in F24
0115 F([1/2,1/6,5/6],[1,1];p/q) p/q in F24
0116 F([1/2,1/6,5/6],[3/2,3/2];p/q) p/q in F24
0117 F([1,1,1],[2,2];p/q) p/q in F24
0118 F([1,1,1],[1,2];p/q) p/q in F24
0119 F([1,1,1],[2,1/2];p/q) p/q in F24
0120 F(1,5/3,4/3],[2,5/2];p/q) p/q in F24
0121 F(1,1/3,2/3],[2,2];p/q) p/q in F24
0122 Psi(1,p/q) p/q in F24
0123 Psi(2,p/q) p/q in F24
0124 F([1/2,1/2],[1];(p/q)^2) p/q in F24
0125 Zeta(p/q) p/q in F24
0126 F([1/2,1/2],[1];p/q) p/q in F24
0127 F([1/2,1/2],[3/2],p/q) p/q in F24
0128 F([1/4,3/4],[1];p/q) p/q in F24
0129 F([1/6,5/6],[2],p/q) p/q in F24
0130 (log(p/q)/Pi)**2 p/q in F60
0131 Sum(1/P(n),n=1..infinity) P(n)=(2nd degree polynomials)
0132 Psi(p/q)*GAMMA(p/q) p/q in F24
0133 GAMMA''(p/q) p/q in F24
0134 GAMMA'''(p/q) p/q in F24
0135 F([1,2],[3/2],p/q) p/q in F24
0136 Zeta(p/q)/Zeta(1-p/q) p/q in F24
0137 sinh(Pi*p/q) p/q in F24
0138 cosh(Pi*p/q) p/q in F24
0139 tanh(Pi*p/q) p/q in F24
0140 Psi(a/b)+Psi(c/d) a/b and c/d = k/120,k=1..119
0141 Psi(a/b)-Psi(c/d) a/b and c/d = k/120,k=1..119
0142 Psi(1,a/b)+Psi(1,c/d) a/b and c/d = k/120,k=1..119
0143 Psi(1,a/b)-Psi(1,c/d) a/b and c/d = k/120,k=1..119
0144 Psi(2,a/b)+Psi(2,c/d) a/b and c/d = k/120,k=1..119
0145 Psi(2,a/b)-Psi(2,c/d) a/b and c/d = k/120,k=1..119
0146 F([1,1,2],[1/3,4/3];p/q) p/q in F27
0147 F([2,2,3/2],[4/3,5/3];p/q) p/q in F27
0148 F([1,1,3/2],[2/3,1/3];p/q) p/q in F27
0149 F([1,1,3/2],[4/3,5/3];p/q) p/q in F27
0150 F([1,2,3/2],[4/3,5/3];p/q) p/q in F27
0151 F([2,2,3/2],[4/3,5/3];p/q) p/q in F27
0152 F([1, 1/2, 1/2, 1/2],[3/2, 3/2, 3/2];p/q) p/q in F27
0154 Pi*tanh(Pi*p/q) p/q in F24
0155 Pi*coth(Pi*p/q) p/q in F24
0156 sum(1/P(n),n=1..infinity), P(n): 3rd degree pol. integer coeffs.
0157 F([a,b],[1/2],c) a,b,c in F12
0158 F([a,b],[1],c) a,b,c in F12
0159 F([a,b],[3/2],c) a,b,c in F12
0160 F([a,b],[2],c) a,b,c in F12
0161 F([a,b],[4/3],c) a,b,c in F12
0162 F([a,b],[5/3],c) a,b,c in F12
0163 F(a,a;1/2;b) a in F12, b in F24
0164 F(a,a;1;b) a in F12 and b in F24
0165 F(a,a;3/2;b) a in F12 and b in F24
0166 F(a,a;2;b) a in F12 and b in F24
0167 F(a,a;4/3;b) a in F12 and b in F24
0168 F(a,a;5/3;b) a in F12 and b in F24
0169 F(1,2;1/2;p/q) p/q in F60
0170 F(1,2;1/3;p/q) p/q in F60
0171 F(1,2;2/3;p/q) p/q in F60
0172 F(1,2;3/2;p/q) p/q in F60
0173 F(1,2;4/3;p/q) p/q in F60
0174 F(1,2;5/3;p/q) p/q in F60
0175 F(1,1;1/2;p/q) p/q in F120
0176 F(1,1,1;1/2,1/2;p/q) p/q in F120
0177 F(1,1,1,1;1/2,1/2,1/2;p/q) p/q in F120
0178 Sum(P(n)/binomial(3*n,n),n=1..infinity), P(n) up to 3rd deg. polynomials
0179 Sum(1/(P(n)*binomial(3*n,n)),n=1..infinity), P(n) up to 3rd deg. polynomials
0180 Sum(1/(P(n)+binomial(3*n,n)),n=1..infinity), P(n) up to 3rd deg. polynomials
0181 Sums of fractional parts of Bernoulli numbers.
0182 Generalized Zeta function or Hurwitz function.
0183 Product(1+1/Product(A(k),k=1..n),n=1..inf), Axxxxxx is from Enc. Integer Seqs.
0184 Sum(1/Product(A(k),k=1..n),n=1..inf), Axxxxxx is from Enc. Integer Seqs.
0185 Product(1+1/(2**n*P(n)),n=1..infinity), P(n) = up to 3rd deg. polynomials
0186 Product(1+1/(2**n+P(n)),n=1..infinity), P(n) = up to 3rd deg. polynomials
0187 Product(1-1/(2**n*P(n)),n=1..infinity), P(n) = up to 3rd deg. polynomials
0188 Product(1-1/(2**n+P(n)),n=1..infinity), P(n) = up to 3rd deg. polynomials
0189 Product(1 (+/-) 1/binomial(2*n,n)/P(n),n=1..infinity), P(n) is a polynomial
0190 Product(1 (+/-) 1/binomial(2*n,n)/P(n),n=1..infinity), P(n) is a polynomial
0191 Product(1 (+/-) P(n)/2**n,n=1..infinity), P(n) is a polynomial
0192 Mixed constants, simple homographic expressions.
0193 Fractional part of n*X
0194 Continued fraction expansion of Pi.
0195 Fractional part of exp(Pi*sqrt(n)/4).
0196 Continued fraction expansion of Zeta(3).
0197 Continued fraction expansion of gamma or Euler's constant.
0198 (a+b*I)**(p/q), real and imaginary part.
0199 Sum(1/2**A(n),n=1..infinity), A(n) from the Enc. of Integer Seqs.
0219 sum(1/(n**k*n!),n=1..inf) k=1..64
0220 eta(x) x in F60 Eta function
0221 eta(1+x) x in F60 : Eta function
0222 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0223 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0224 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0225 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0226 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0227 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0228 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0229 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0230 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0231 F(a,b;z) a,b in F12 and z in F60: F(a,b;z) hypergeometric function
0232 sum(1/(n!*phi(a,b,c)),n=1..inf) with a,b,c in [1..24]
0233 sum(1/(n!*phi(a,b,c,d)),n=1..inf) with a,b,c,d in [1..18]
0243 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0244 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0245 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0246 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0247 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0248 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0249 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0250 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0251 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0252 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0253 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0254 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0255 F(a,b;1) a,b in F60: F(a,b;z) = Hypergeometric function
0256 1F2(a,b;c;1) a and b in F12
0257 1F3(a;b,c,d;1) a,b,c,d in F12
0258 2F2(a,b;c,d;1) a,b,c,d in F12
0259 2F3(a,b;c,d,e;1) a,b,c,d,e in F12
0260 1F4(a,b,c,d;e;1) a,b,c,d,e in F12
0261 Roots of polynomials of 5th degree (coeffs: -9..9)
0262 Roots of polynomials of 4th degree (coeffs: -9..9)
0263 Roots of polynomials of 4th degree (coeffs: -9..9)
0264 Roots of polynomials of 3rd degree (coeff: -12..12)
0265 Roots of Orthogonal Polynomials: H,T,U,P, n=3..48
0266 Zeros of Bernoulli polynomials, n=3..64
0267 Zeros of Euler polynomials, n=3..64
0268 Zeros of polynomials of Mobius: sum(mu(n)*x**n,n=1..k)=M(k,x)
0269 Zeros of polynomials Phi (Euler totient): sum(phi(n)*x**n,n=1..k) = Phi(k,x)
0270 t/(exp(t)-1), t element of F60
0271 2/(exp(t)+exp(-t)), t element of F60
0272 exp(exp(x)-1), x element of F60
0273 (a/b)**(p/q) all in F24, p/q positive and negative.
0274 Roots of polynomials, up to 12th degree, coefficients= (-1,0,1).
0275 Roots of polynomials, up to 12th degree, coefficients= (-1,0,1).
0276 exp(roots of(3rd degree pol)), coeffs in (-9..9)
0277 log(roots of(3rd degree pol)), coeff in (-9..9)
0278 Beta(a,b), a and b elements of F24: GAMMA function
0279 Zeta(1,a/b) a/b elements of F60
0280 Zeta(2,a/b) a/b elements of F60
0281 Zeta(3,a/b) a/b elements of F60
0282 Ai(p/q), p/q in F24+ (-3..3). Airy function
0283 Bi(p/q), p/q in F24+ (-3..3). Airy function
0284 Shi(x), x in F27 + (-5..5) : Sine hyperbolic integral
0285 Chi(x), x in F27 + (-5..5) : Cosine hyperbolic integral
0286 Si(x), x in F27 + (-5..5) : Sine integral
0287 Ci(x), x in F27 + (0..5) : Cosine integral
0288 FresnelC(x), x in F27 + ]0,9]
0289 FresnelS(x), x in F27 + ]0,9]
0290 erf(x), x in F27 + ]0,9]
0291 Dawson(x), x in F27 + ]0,9]
0292 Ei(1,x), x elements of ]0,10[ and F27
0293 Ei(2,x), x elements of ]0,10[ and F27
0294 Ei(3,x), x elements of ]0,10[ and F27
0295 BesselI(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27
0296 BesselJ(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27
0297 BesselK(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27
0298 BesselY(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27
0299 W(x) x elements of ]0,10[ and F27
0300 Hypergeometric with integer arguments
0301 cos(tan(Pi*x)) x ]0,5[ and F27 \ 1/2
0302 sin(tan(Pi*x)) x ]0,5[ and F27 \ 1/2
0303 Elem(sum(Zeta(3*n-1)-1),n=1..inf)) = Z(3*n-1)
0304 Elem(sum(Zeta(3*n+1)-1),n=1..inf)) = Z(3*n+1)
0305 Roots(poly(cos(Pi/n))), n=13..120
0306 Roots(poly(sin(Pi/n))), n=13..120
0311 f(a/b)*f(c/d), f = sin or cos : a/b and c/d in F60 and <=1/2.
0312 f(a/b)/f(c/d), f = sin or cos : a/b and c/d in F60 and <=1/2.
0313 f(a/b)+f(c/d), f = sin or cos : a/b and c/d in F60 and <=1/2.
0314 f(a/b)-f(c/d), f = sin or cos : a/b and c/d in F60 and <=1/2.
0315 Roots of polynomials of the 8th degree.
0317 Simple algebraic numbers with surds.
0318 Simple algebraic numbers with surds.
0319 Simple algebraic numbers with surds.
0320 Simple algebraic numbers with surds.
0321 Simple algebraic numbers with surds.
0322 Simple algebraic numbers with surds.
0323 Simple algebraic numbers with surds.
0324 Simple algebraic numbers with surds.
0325 Simple algebraic numbers with surds.
0326 Simple algebraic numbers with surds.
0327 Simple algebraic numbers with surds.
0328 Simple algebraic numbers with surds.
0329 Simple algebraic numbers with surds.
0330 Simple algebraic numbers with surds.
0331 Simple algebraic numbers with surds.
0332 Simple algebraic numbers with surds.
0333 Simple algebraic numbers with surds.
0334 Simple algebraic numbers with surds.
0335 Simple algebraic numbers with surds.
0336 Simple algebraic numbers with surds.
0394 Sum(1/(n**n+P(n)),n=1..inf), P(n) 3rd degree pol.
0395 Sum(1/binomial(2*n,n)/P(n),n=1..inf) P(n) 3rd degree pol.
0396 Concatenated sequences from The Encyclopedia of Integer Sequences.
0397 Sum(Annnnnn(n)/(n-1)!,n=1..inf), Annnnnn from the Enc. Integer Seqs.
0398 Sum(Annnnnn(n)/n!!,n=1..inf), Annnnnn from the Enc. Integer Seqs.
0399 Simple rationals (extended).
0400 Sum(1/(n!+P(n),n=1..inf), P(n) : polynomials up to 3rd degree.
0401 Sum(1/(2^n+P(n),n=1..inf), P(n) : polynomials up to 3rd degree.
0402 Sum(1/(Fib(n)+P(n),n=1..inf), P(n) : polynomials up to 3rd degree.
0403 Dirichlet constants, sums of Digamma function with rat. arguments.
0404 Dirichlet constants, sums of Digamma function with rat. arguments.
0405 Mixed constants, 2 with elementary transforms.

isc@cecm.sfu.ca