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Abstract. We present three algorithms to calculate Φn(z), the nth cyclo-

tomic polynomial. The first algorithm calculates Φn(z) by a series of polyno-
mial divisions, which we perform using the fast Fourier transform. The second

algorithm calculates Φn(z) as a quotient of products of sparse power series.

These two algorithms, described in detail in the paper, were used to calcu-
late cyclotomic polynomials of large height and length. In particular, we have

found minimal n for which the height of Φn(z) is greater than n, n2, n3, and

n4, respectively. The third algorithm, the big prime algorithm, generates the
terms of Φn(z) sequentially, in a manner which reduces the memory cost. We

use the big prime algorithm to find the minimal known height of cyclotomic

polynomials of order five. We include these results as well as other exam-
ples of cyclotomic polynomials of unusually large height, and bounds on the

coefficient of the term of degree k for all cyclotomic polynomials.

1. Introduction

The nth cyclotomic polynomial, Φn(z), is the monic polynomial whose φ(n)
distinct roots are exactly the nth primitive roots of unity.

(1) Φn(z) =
n∏
j=1

gcd(j,n)=1

(
z − e2πi j

n

)
.

It is an irreducible polynomial over Z with degree φ(n), where φ(n) is Euler’s totient
function. The nth inverse cyclotomic polynomial, Ψn(z), is the polynomial
whose roots are the nth non-primitive roots of unity.

(2) Ψn(z) =
n∏
j=1

gcd(j,n)>1

(
z − e2πi j

n

)
.

As the roots of Φn(z) and Ψn(z) comprise all nth roots of unity, we have

(3) Ψn(z) =
zn − 1
Φn(z)

.

For more about inverse cyclotomic polynomials, see Moree [19].
Let the order of Φn(z) denote the number of distinct odd prime divisors of n.

To make the distinction between the order of Φn(z) and n, we will refer to n as the
index of Φn(z) in this paper.
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We write

Φn(z) =
φ(n)∑
k=0

an(k)zk and Ψn(z) =
n−φ(n)∑
k=0

cn(k)zk

and define an(k) = 0 for k > φ(n). Let A(n) and S(n) be the height and length,
respectively, of Φn(z). That is,

A(n) = ‖Φn(z)‖∞ = max
0≤k≤φ(n)

|an(k)|, and S(n) = ‖Φn(z)‖1 =
φ(n)∑
k=0

|an(k)|.

For n < 105, all the coefficients of Φn(z) are −1, 0, or 1; however, for n = 105 we
find that A(105) = 2. Paul Erdős [7] proved that A(n) is not bounded above by any
polynomial in n. That is, for any constant c > 0, there exists n such that A(n) > nc.
There is a wealth of material on the behaviour of A(n) and the size of cyclotomic
polynomial coefficients [4, 5, 17, 25]; however, computation may yet provide more
insight. Koshiba [15, 16] calculated A(4849845) = 669606 and found the coefficients
of Φn(z) with degree less than φ(n)/10 for n = 111546435 = 3 ·5 ·7 ·11 ·13 ·17 ·19 ·23
and in particular, to our knowledge, the first computed cyclotomic coefficient an(k)
such that an(k) > n. T.D. Noe has made a wealth of data about cyclotomic
polynomials and their coefficients available at the Sloane On-Line Encyclopedia of
Integer Sequences (see [20, 21, 22, 23, 24], for instance).

A cyclotomic polynomial Φn(z) is said to be flat if A(n) = 1. We say that Φn(z)
is flatter than Φm(z) if A(m) < A(n). It is currently unknown whether there are
flat cyclotomic polynomials of order five or greater. We find many examples of flat
cyclotomic polynomials of order three and four, and many examples of Φn(z) of
order five and height 2.

A related problem of interest is the behaviour of the zk coefficient an(k) of
Φn(z) over n ∈ N. To that end let a(k) = maxn |an(k)|. Bachman [1] developed an
asymptotic formula for log a(k) that improved a result of Montgomery and Vaughan
[18]. Noe [20] computed a(k) for k ≤ 1000. We independently verify a(k) for
k ≤ 172 by way of a brute-force approach. We also extend results of Bosma [6],
who computed the least value of k for which b ∈ Z occurs as an(k) for some n, for
|b| ≤ 50.

Our motivation for developing algorithms to calculate cyclotomic polynomials
was to further the study the coefficients of Φn(z). In particular, we were interested
in studying A(n). We found, for instance, that n = 1181895 is the smallest n
for which A(n) > n. Until recently, it was impractical to use modern computer
algebra systems to calculate Φn(z) for n in the millions. With the development and
implementation of the algorithms in this paper, we are able to compute Φn(z) for
n in the billions and, for some specific, non-trivial cases, well beyond that.

1.1. Organization of paper. We present three algorithms to calculate cyclotomic
polynomials. Our first algorithm calculates Φn(z) for squarefree n via a series
of polynomial divisions. We use the discrete fast Fourier transform to perform
these divisions quickly. The second algorithm calculates Φn(z) as a quotient of
products of sparse power series. The third algorithm outputs the coefficients of
Φn(z) sequentially, in a manner which requires less memory than it takes to store
Φn(z) (a limitation of the first two algorithms).
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Using these three algorithms, we have produced a library of data on the coeffi-
cients of cyclotomic polynomials. Amongst our results, we have computed:

[I] A(n) and S(n) for odd, squarefree n amongst the following:
• n < 108 with three prime factors.
• n < 3 · 108 with four prime factors.
• n < 6.26 · 108 with five prime factors.
• n < 109 with six prime factors.
• n < 2.36 · 109 with seven prime factors.
• n < 5.6 · 109 with eight prime factors.
• n < 1.50 · 1010 with nine prime factors.

[II] The height and length of Ψn(z) for odd, squarefree n amongst the following:
• n < 108 with three prime factors.
• n < 108 with four prime factors.
• n < 5 · 108 with five prime factors.
• n < 5 · 108 with six prime factors.
• n < 109 with seven prime factors.
• n < 2 · 109 with eight prime factors.

[III] The smallest n for which A(n) > n, n2, n3, and n4 respectively, and other
values of unusually large height (Tables 6,7).

[IV] The smallest n such that A(n) > 264 (Table 6).
[V] maxn an(k), minn an(k), and a(k) = maxn|an(k)| for k ≤ 172 (partially veri-

fying a result of Noe [20]).
[VI] The smallest k for which an(k) = b, and the smallest index n for given k, b;

for |b| ≤ 927 (Table 10).
[VII] Many examples of Φn(z) of order 5 with height 2 (Table 9).

We include some of the more noteworthy results in this paper; however, all of
the data listed above is available on the web at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

1.2. Preliminaries. We are interested in computing cyclotomic polynomials of
large height. The following two identities are useful:

Lemma 1. Let n > 1 be odd. Then Φ2n(z) = Φn(−z).

Lemma 2. Let p be a prime that divides n. Then Φnp(z) = Φn(zp)

Lemma 1 tells us A(2n) = A(n) and S(2n) = S(n) for odd n. Lemma 2 says
that A(np) = A(n) and S(np) = S(n) for p dividing n. For the remainder of the
paper, we will be strictly concerned with the calculation of cyclotomic polynomials
of squarefree, odd index. Lemmas 1 and 2 provide an easy means of calculating
Φn(z) for n even or nonsquarefree, provided we can calculate Φm(z), where m is
the greatest squarefree, odd divisor of n.

2. Calculating Φn(z) as a polynomial quotient via the fast Fourier
transform

Our first algorithm calculates Φn(z) by a series of polynomial divisions. Our
algorithm uses the following identity, which is easy to verify by showing that both
sides have the same roots.

Lemma 3. Let p be prime that does not divide m. Then Φmp(z) =
Φm(zp)
Φm(z)

.
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We thus are able to calculate Φn(z), for n of the form

(4) n = p1p2 · · · pk = mp,

with largest prime divisor p = pk, by repeated polynomial division, as detailed in
algorithm 1.

Algorithm 1: Calculating Φn(z) by repeated division
Input: n = p1p2 · · · pk, a product of k distinct primes.
Output: Φn(z), the nth cyclotomic polynomial.
η ←− 1, Φ∗n(z)←− z − 1
for j = 1 to k do

η∗ ←− ηpj

Φη∗(z)←− Φη(zpj )
Φη(z)

η ←− η∗

return Φη(z)

This algorithm (see [26]) is well-known. It is used in many computer alge-
bra systems. For example, in Maple 13 and in prior versions, it is used by the
numtheory[cyclotomic] command. Using classical, quadratic polynomial division,
however, is much too slow to do any extensive search on cyclotomic polynomials
of index n over one million. For example, Maple 13 takes over five minutes to find
Φ255255(z) (see table 3 for timings). We implemented algorithm 1 with machine-
precision arithmetic and optimized the polynomial division in algorithm 1 by way
of the discrete fast Fourier transform (FFT)[9, 26]. Our implementation of algo-
rithm 1 can calculate Φ255255(z) modulo two 32-bit primes in under one second.
Algorithm 2 gives a high-level description of the division calculation via the FFT.

Using the fast Fourier transform, we can calculate Φn(z) = Φm(zp)
Φm(z) modulo a

prime q in O(N log(N)) arithmetic operations, where N is the smallest power of
2 greater than φ(n), the degree of the quotient. We need not interpolate using
N > φ(m)p, the degree of the numerator, as we know division of Φm(zp) by Φm(z)
is exact.

Algorithm 2: Polynomial division via the discrete fast Fourier transform
Input:

• Φm(z), for some odd, squarefree m
• p, an odd prime not dividing m
• N = 2s, a power of 2 greater than φ(n)
• q, a prime of the form q = r ·N + 1
• ω, a primitive Nth root of unity modulo q

Output: Φmp(z) mod q

Calculate Ai = Φm(ωip) mod q and Bi = Φm(ωi) mod q for i = 0, 1, . . . , N − 1
using the discrte FFT.

Ci ←−
Ai
Bi

mod q for i = 0, 1, . . . , N − 1 //Ci = Φmp(ωi)

Interpolate C(z) = Φmp(z) mod q by the inverse FFT.
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Observe that algorithm 2 requires that Bi is nonzero modulo q for ωi, 0 ≤ i < N .
This does not pose a problem for odd orders m, however, by the following lemma.

Lemma 4. Let m > 1 be an odd, squarefree integer, and let p,N, q, and ω be as
defined in algorithm 2. Then Φm(ωi) 6= 0 mod q for 0 ≤ i < N .

Proof. Every power of ω is a (2k)th root of unity modulo q for some k ≤ s. For
m > 1 it holds that Φm(z) divides

(5)
zm − 1
z − 1

= zm−1 + zm−1 + · · ·+ z + 1.

Thus as q does not divide m, any root of Φm(z) mod q is necessarily an mth root
of unity not equal to 1. Given m is odd for our purposes, the only mth root of
unity that is also a (2k)th root of unity modulo q for some k is exactly 1, and so
Φm(ωi) 6= 0 mod q for 0 ≤ i < N . �

2.1. Implementation Details. For primes q < 232 of the form q = rN + 1, N
cannot be greater than 227. Thus for cyclotomic polynomials of large degree, we
require primes larger than 232. Choosing unnecessarily large primes for the FFT,
however, would require multiprecision arithmetic. Using 64-bit arithmetic, we are
able to multiply modulo prime numbers as large as 42-bits (algorithm 3); however,
multiplication modulo a 42-bit prime is roughly twice as slow as multiplication
modulo a 32-bit prime.

Algorithm 3: Multiplication modulo a 42-bit prime
Input: a = a41a40 · · · a1a0, b = b41b40 · · · b1b0, two 42-bit primes modulo a

42-bit prime q (i.e. q < 242)
Output: c = ab mod q
A0 and B0 are obtained via bitmask operations; A1 and B1 are obtained by
bitshifts:

A0 ←− a20a19 · · · a0 //A0 = a mod 221

A1 ←− a41a40 · · · a21 //A1 = (a−A0)/221

B0 ←− b20b19 · · · b0 //B0 = b mod 221

B1 ←− b41b40 · · · b21 //B1 = (b−B0)/221

c←− A1B1221 mod q, c←− c+A1B0, if c > q then c←− c− q
c←− c+A0B1, if c > q then c←− c− q
c←− c · 221 mod q, c←− c+A0B0, if c > q then c←− c− q

The FFT only gives us the coefficients of Φn(z) modulo a prime q1. Our resulting
polynomial, call it Hn(z), will not equal Φn(z) if A(n) > q1

2 . We calculate Φn(z)
modulo another prime q2. We then reconstructHn(z) ≡ Φn(z) mod q1q2 by Chinese
remaindering. As such, we call this implementation the FFT-CRT algorithm. We
do this with primes q1, q2 . . . ql until ‖Hn(z)‖∞ · 220 < q1q2...ql

2 . We then take our
solution Hn(z) and use the FFT to test that

(6) Hn(ωj) · Φm(ωj)− Φm(ωjp) ≡ 0 mod ql+1 (0 ≤ j < N),

for some new prime ql+1 with Nth primitive root ω, where here N is a power
of two greater than φ(m)p. This is because Hn(z)Φm(z) − Φm(zp) is potentially
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a polynomial of degree φ(m)p. If equation (6) holds for all j, Hn(z) ≡ Φn(z)
(mod Q = q1q2 · · · ql · ql+1). For ql+1 > 240, it follows that all of the coefficients
of Φn(z), modulo Q, lie in the interval (−Q260 ,

Q
260 ). We consider 60 redundant bits

sufficient. As we know the cyclotomic coefficients roughly have a flat-bell distribu-
tion, it is very improbable that the height of Φn(z) were greater than Q

2 with all
the coefficients strictly in the range (−Q260 ,

Q
260 ) modulo Q. Indeed, all our results ob-

tained by this method thus far have been consistent with results we have obtained
by non-modular algorithms. Table 1 lists the primes and the primitive roots we
used in our computations.

q = r ·N + 1 size of q ω
q1 2748779069441 = 5 · 239 + 1 42 bits 243
q2 4123168604161 = 15 · 238 + 1 42 bits 624392905782
q3 2061584302081 = 15 · 237 + 1 41 bits 624392905781
q4 206158430209 = 3 · 236 + 1 38 bits 10648
q5 2027224563713 = 59 · 235 + 1 41 bits 1609812002788

Table 1: Primes and the primitive roots used in our FFT calculations

The brunt of the computation in our implementation of 1 takes place in the last
division, as each successive division effectively increases the degree of the resulting
intermediate polynomial by another factor. For squarefree n, we can compute
Φn(z) mod qi in O(N · logN) operations in Zqi

.

3. Calculating Φn(z) as a quotient of sparse power series

Every nth root of unity is a primitive dth root of unity for some unique d|n, and
every dth primitive root of unity is an nth root of unity. Thus zn− 1 =

∏
d|n Φd(z).

Applying the Mőbius inversion formula to this, we obtain the well-known identity:

(7) Φn(z) =
∏

d|n,d>0

(
zd − 1

)µ( n
d )
,

where µ is the Mőbius function. For n > 1, the number of squarefree divisors of n
is even, in which case

(8) Φn(z) =
∏

d|n,d>0

(
1− zd

)µ( n
d )
.

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) =
(1− z3)(1− z5)(1− z7)(1− z105)
(1− z)(1− z15)(1− z21)(1− z35)

.

The sparseness of each term in this quotient lends itself to fast power series arith-
metic. For the purposes of our algorithm, we treat Φn(z) as a truncated power
series. Multiplying a power series B(z) =

∑∞
i=0 b(i)z

i by 1− zd is easy:

(9)

( ∞∑
i=0

b(i)zi
)(

1− zd
)

=
d−1∑
i=0

b(i)zi +
∞∑
i=d

(b(i)− b(i− d))zi
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To divide by 1− zd we merely multiply by the power series for 1
1−zd :

(10)

( ∞∑
i=0

b(i)zi
)(

1 + zd + z2d + · · ·

)
=
∞∑
i=0

(
b(i) + b(i− d) + b(i− 2d) + · · ·

)
zi

Observe that the terms of B(z)(1+zd) and C(z)(1+zd)−1 depend strictly on terms
of lesser degree in C(z). In addition, for n > 1, Φn(z) is palindromic. That is,
an(k) = an(φ(n) − k). So, to calculate the Φn(z) as a power series, we only need
compute and store the first φ(n)

2 + 1 terms of Φn(z) and of any intermediate power
series in our computation.

Division by (1− zd) done naively could be quadratic-time, ruining the efficiency
of the algorithm. We avoid this by the following approach: Suppose we have the
coefficients b(0), b(1), . . . , b(D) of some power series B(z) up to degree D = φ(n)

2 ,
and we want to calculate c(0), c(1), . . . , c(D), the first D+1 coefficients of the power
series C(z) · (1 − zd)−1 =

∑∞
i=0 b(i). We can calculate all the c(i) in linear time,

without using additional memory to store intermediate results. By (10), c(i) = b(i)
for 0 ≤ i < d. For i > d, where i = qd+ r and 0 ≤ r < i,

c(i) = b(i) + b(i− d) + · · ·+ b(i− qd).

Since c(i− d) = b(i− d) + b(i− 2d) + · · · b(i− qd), we have that

c(i) = c(i− d) + b(i).

If we compute c(i) = c(i− d) + b(i) for i = d, d+ 1, · · · , D, we will have calculated
all the c(i) using at most one addition operation per term. After we use the power
series B(z) to compute the power series of B(z) · (1− zd)−1, we can discard B(z).
Algorithm 4 describes how we calculate Φn(z) using these techniques.

Algorithm 4: Computing Φn(z) as a quotient of sparse power series

The Sparse Power Series (SPS) Algorithm
Input: n = p1p2 · · · pk, a product of k distinct primes
Output: an(0), . . . , an(φ(n)

2 + 1), the first half of the coefficients of Φn(z)
D ←− φ(n)

2 + 1, an(0)←− 1
for 1 ≤ i ≤M do an(i)←− 0
for d|n such that d > 0 do

if µ(nd ) = 1 then
//multiply by 1− zd
for i = D down to d by −1 do an(i)←− an(i)− an(i− d)

else
//divide by 1− zd
for i = d to D do an(i)←− an(i) + an(i− d)

We call the algorithm the sparse power series (or SPS) algorithm. The SPS
algorithm requires O(2k · φ(n)) operations in Z to calculate Φn(z) of order k.

We have implemented 8, 32, 64, and 128-bit versions of the SPS algorithm. A
variant of our 32 and 64-bit versions are now used in Maple 14 and Sage. We do not
use the GNU Multi-Precision library for multiprecision arithmetic. We hand-coded
our own 64 and 128-bit integer arithmetic that checks for overflow. This can be done
without using redundant bits. We also have modular implementations of the SPS
algorithm that calculates Φn(z) modulo 8, 16 or 32-bit primes, and reconstructs
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Φn(z) by Chinese remaindering. This version is particularly useful for calculating
cyclotomic polynomials that we cannot completely store in main memory with large
precision.

3.1. The sparse power series algorithm for inverse cyclotomic polynomi-
als. Recall that Ψn(z), the nth inverse cyclotomic polynomial, is the monic poly-
nomial whose roots are the nth non-primitive roots of unity. By (3) Φn(z) ·Ψn(z) =
zn − 1. Thus we see from (8) that, for n > 1,

Ψn(z) =
zn − 1
Φn(z)

= (zn − 1) ·
∏
d|n

(
1− zd

)−µ( n
d )= −

∏
d|n,0<d<n

(
1− zd

)−µ( n
d )
.(11)

It becomes immediate that we can calculate Ψn(z) in a manner ever-similar
to the sparse power series algorithm for Φn(z). As with Φn(z), we need only
compute the first half of the terms of Ψn(z) because Ψn(z) is antipalindromic:
for n > 1 and Ψn(z) = cn(0) + cn(1)z + · · · + cn(n − φ(n))zn−φ(n), it holds that
cn(k) = −cn(n−φ(n)−k). For squarefree n = p1p2 . . . pk the algorithm will require
O
(
2k(n− φ(n))

)
= O(2kn) operations in Z.

Algorithm 5: Calculating Ψn(z) as a quotient of sparse power series

The Sparse Power Series Algorithm for Ψn(z)
Input: n = p1p2 · · · pk, a product of k distinct primes
Output: cn(0), . . . , c(bn−φ(n)

2 c), the first half of the coefficients of Ψn(z)
D ←− bn−φ(n)

2 c, c(0)←− −1
for 1 ≤ i ≤M do c(i)←− 0
for d|n such that 0 < d < n do

if µ(nd ) = −1 then
//multiply by 1− zd
for i = D down to d by −1 do c(i)←− c(i)− c(i− d)

else
//divide by 1− zd
for i = d to D do c(i)←− c(i) + c(i− d)

4. A low-memory algorithm to calculate A(n)

Calculating cyclotomic polynomials of very large degree using algorithm 4 can
bode problematic, as oftentimes Φn(z) will not fit in main memory. In such a case,
there are a variety of approaches to calculate Φn(z).

One approach is to calculate Φn(z) modulo primes pi sufficiently small that we
can fit Φn(z) in memory and write the images to hard disk. We then reconstruct the
coefficients of Φn(z) sequentially from the images of Φn(z) mod pi. This minimizes
the amount of computation we have to do on the hard disk.

For yet larger cyclotomic polynomials, we may not even be able to store the
coefficients modulo a prime in memory. In which case we may be forced to write
Φn(z) and our intermediate work to disk. This proves most costly, as the speed of
the hard disk bottlenecks the sparse power series algorithm.
As a motivating example, consider Φn(z) for

n = 2576062979535 = 3 · 5 · 29 · 2609 · 2269829.
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This is smallest n = p1p2p3p4p5, a product of five distinct odd primes, such that

(12) pk ≡ −1 mod
k−1∏
i=1

pi for k = 2, 3, 4, 5.

Nathan Kaplan [12] asked whether this cyclotomic polynomial is flat. To our knowl-
edge, no one has yet found a flat cyclotomic polynomial of order 5. This was a
natural candidate to test for flatness. Kaplan [14] proved for n = p1p2p3 satifying
(12) for k = 2, 3 that A(n) = 1. In addition, for every odd n < 3 · 108 of the form
n = p1p2p3p4 satisfying (12) for k = 2, 3, 4 is flat.

For our purposes, it is not necessary that we retrieve all the coefficients of Φn(z)
at once, as we are mostly concerned with the height of Φn(z). Indeed, for a cyclo-
tomic polynomial with degree in the tens of billions or beyond, there is very little
we can feasibly do with Φn(z), so there may be no purpose to store it in memory
for further computation.

Let n = mp be a squarefree, odd integer with largest prime divisor p. We can
compute A(n) by inspecting some of the coefficients of Φn(z) sequentially such that
we only have to store m coefficients of Φn(z) at any one time. This algorithm takes
O(m2) = O(n

2

p2 ) integer operations, provided we have Φm(z) and Ψm(z). Clearly,
such an algorithm works best for n with a large prime divisor, hence we affectionally
call it the big prime algorithm.

Recall from (3) that Ψn(z) = (zn − 1)/Φn(z). By lemma 3,

Φn(z) =Φmp(z) =
Φm(zp)
Φm(z)

= Φm(zp) ·Ψm(z) · (zm − 1)−1

=Φm(z) ·Ψm(z) · (−1− zm − z2m − · · · ).
(13)

Write Φm(z) =
∑φ(m)
i=0 biz

i and Ψm(z) =
∑m−φ(m)
j=0 cjz

j . From equation (13), we

can express coefficients of Φn(z) =
∑φ(n)
s=0 an(s)zs in terms of the bi and cj :

(14) an(k) = −
∑

ip+j≡k mod m
ip+j≤k

bicj .

This leads to the recurrence

(15) an(k) = an(k −m)−
∑

ip+j=k

bicj ,

which is key to our algorithm. We detail the big prime algorithm hereafter:
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Algorithm 6: A low-memory algorithm to obtain the height of Φn(z)

The Big Prime Algorithm to Calculate A(n)
Input: n = mp, a squarefree odd integer with largest prime divisor p
b0, b1, . . . , bφ(m)/2, the first half of the coefficients of Φm(z),
c0, c1, . . . , cm−φ(m), the coefficients of Ψm(z)
Output: H, the height of Φn(z)
ā(0), ā(1) . . . , ā(m− 1)← 0, 0, . . . , 0

for i = 0 to bφ(n)
2p c do

for j = 0 to m− φ(m) do
k ← ip+ j mod m
ā(k)← ā(k)− bicj ,
if j < p and |ā(k)| > H then H ← |ā(k)|

return H
The algorithm iterates through pairs (i, j) such that 0 ≤ j ≤ m − φ(m), and

ip ≤ φ(n)
2 . Since there are only O(m ·φ(m)) such pairs, it follows that the big prime

algorithm takes O(m · φ(m)) ∈ O(m2) arithmetic operations. We only require the
first half of the coefficients of Φm(z), as φ(m)

2 > φ(m)(p−1)
2p = φ(n)

2p .
We store the value of an(k) in ā(k mod m), and discard that value when com-

puting an(k + m). If p > m − φ(m), the degree of Ψm(z), then algorithm 6 does
not consider every term of Φn(z) with degree less than φ(n)

2 . In particular, if there
is no pair (i, j) such that 0 ≤ i ≤ φ(m), 0 ≤ j ≤ m−φ(n), and ip+ j = k, then the
big prime algorithm will not consider the term of the degree k. It follows from (15)
that for such k ≥ m, an(k) = an(k −m), and for such k < m, an(k) = 0. Thus we
need not consider these terms to obtain the height A(n).

It is easy to modify algorithm 6 to generate all (or half) of the coefficients of
Φn(z) (see algorithm 7). In such case the number of comparisons and arithmetic
operations in Z increases from O(m·φ(m)) to O(m·φ(m)+φ(n)). The computation
space remains effectively the same; however, there is the additional O(φ(n)) space
cost to store the coefficients an(k), whether to memory or disk.

Algorithm 7: Computing Φmp(z) from Φm(z) and Ψm(z)

The Big Prime Algorithm to generate Φn(z)
Input: n = mp, a squarefree odd integer with largest prime divisor p,
b0, b1, . . . , bφ(m)

2

← the first half of the coefficients of Φm(z),

c0, c1, . . . , cm−φ(m) ← the coefficients of Ψm(z)
Output: an(0), . . . , an(φ(n)/2), the first half of the coefficients of Φn(z)
ā(0), ā(1) . . . , ā(m− 1)← 0, 0, . . . , 0
for i = 0 to bφ(n)

2p c do
for j = 0 to m− φ(m) do

k ←− ip+ j mod m
ā(k)← ā(k)− bicj

for k = 0 to p− 1 do an(k)← ā(k mod m)

return an(0), . . . , an(φ(n)
2 )
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4.1. The big prime algorithm for Ψn(z). Provided we have Φm(z) and Ψm(z),
we can generate the terms of Ψn(z) for n = mp, inO(m·φ(m)) arithmetic operations
in Z. To do this we calculate Ψn(z) as a product of two polynomials. One can show
that

(16) Ψmp(z) = Φm(z)Ψm(zp)

by showing that both sides of (16) have the same roots. Thus if we again let
Φm(z) =

∑φ(m)
i=0 biz

i and Ψm(z) =
∑m−φ(m)
j=0 cjz

j , it is immediate that

(17) Ψn(z) =
∑

i+pj=k

bicjz
k,

where the sum is taken over 0 ≤ i ≤ φ(m) and 0 ≤ j ≤ m−φ(m). If p > φ(m), the
implementation is especially simple, as we have at most one solution to i+ jp = k
for a given k.

4.2. Implementation Details and Observations. As was the case with our mo-
tivating example n = 2576062979535, the big prime algorithm and its variants were
developed to calculate A(n) for large squarefree n with a large prime divisor. The
n for which we first implemented this algorithm were of the form n = p1p2p3p4p5,
a product of five distinct primes, such that pk >

∏k−1
i=0 pi for k = 2, 3, 4, 5.

For such cases, to calculate A(n) it is often advantageous to use a sparse represen-
tation for Φm(z) and Ψm(z). For example, for n = mp where n = 2576062979535,
m = 1134915 and p = 2269829, Φm(z) has degree 584192 but only 31679 terms,
and Ψm(z) has degree 550723 but only 2982 terms.

For yet larger examples of n, we cannot fit an array ofm integers in main memory.
For example, we wanted to see if Φn(z) had height 1 for

n = 2876941641794034669918155 = 5 · 29 · 2029 · 2353639 · 4154714171969.

This is the smallest n = p1p2p3p4p5 with p1 = 5 that satisfies the set of congruences
in (12). To test if A(n) = 1 we first used the sparse power series algorithm to
calculate Φp1p2p3(z) and Ψp1p2p3(z), we then used the big prime algorithm algorithm
to generate sparse representations of Ψm(z) and Φm(z), where m = p1p2p3p4.
We then calculated the terms of Φn(z) whose degress were in a range modulo m
sufficiently small that we could fit in memory. We found that Φn(z) is not flat, as
|an(k)| = 2 for

k = 266298073621 · 4154714171969 + 109596 = 184398730073579852543491,

at which point we stopped the calculation.

5. A comparison of the efficiency of the algorithms

Table 2 gives a comparison of the three algorithms to calculate Φn(z). For the
purposes of this section, let n be of the form

(18) n = p1 · p2 · . . . · pk = mp,

a product of k distinct primes with largest prime divisor p.
The time and space complexities alone do not completely illuminate the advan-

tages and disadvantages of each algorithm. Our implementation of the SPS algo-
rithm (alg. 4) has several advantages over the FFT-CRT method (alg. 1). First,
we can perform the calculations with little memory overhead; effectively all the
memory used in the power series algorithm is to store the coefficients. The power
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Table 2: Time and space complexities of the algorithms for Φn(z).

Algorithm # of operations in Z space complexity
FFT-CRT (mod 1 prime, section 2) O(n log n) O(φ(n))
Sparse power series (algorithm 4) O(2k · φ(n)) O(φ(n))
Big prime (for A(n) only, algorithm 6) O(m · φ(m))* O(m)

* Excludes cost of computing Φm(z) and Ψm(z).

series algorithm makes better use of the memory used to store terms. Using 64-bits
of storage for one term gives us exactly 64-bit precision using the SPS method,
whereas the FFT-CRT algorithm uses 64-bits to store a 42-bit terms. Most sig-
nificantly, the arithmetic operations used in algorithm 4 are strictly additions and
subtractions, which take fewer CPU cycles than multiplication and division oper-
ations. In addition, the SPS algorithm exhibits better locality than the discrete
fast Fourier transform. In practice, our implementation of the SPS algorithm is
appreciably faster than that of the FFT-CRT algorithm (see table 3).

Table 3: A comparison of running times of cyclotomic polynomial algorithms on
a 3 GHz Intel Xeon system

Algorithm Running time to compute Φn(z)(seconds)
n = 255255 n = 1181895 n = 43730115

Maple 13 cyclotomic command 429.14 - -
Maple using an array of machine
precision integers

13.78 197.37 -

FFT-CRT using 2 42-bit primes,
plus a check prime (section 2)

1.12 4.52 371.93

FFT-CRT using 2 32-bit primes,
plus a check prime

0.47 2.07 163.68

SPS, 64-bit (algorithm 4) 0.01 0.08 6.04
Big prime, 64-bit (algorithm 6)* 0.06 0.50 727.44

*Includes time to compute Φm(z) and Ψm(z) via the 64-bit sparse power series algorithm

Table 4: Running time for the big prime algorithm (calculating height only, 8-bit
version) on a 3 GHz Intel Xeon system

n factorization of n user time (seconds)
2576062979535 3 · 5 · 29 · 2609 · 2269829 1.23

36654908721735 3 · 5 · 29 · 6959 · 12108659 3.29
117714212390685 3 · 5 · 59 · 3539 · 37584179 3.44

1349266102959585 3 · 5 · 59 · 8849 · 172290029 8.61
16628239064490285 3 · 5 · 179 · 10739 · 576684299 31.90
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We see that the big prime algorithm is relatively fast for n = 255255 and 1181895
but considerably slower for n = 43730115. This is what we expect, as the algorithm
is quadratic time. These examples, however, are not what the big prime algorithm
was designed for. Table 4 shows timings used to calculate heights of Φn(z) for n of
the form discussed in section 4.2. With the big prime algorithm, we can calculate
heights of cyclotomic polynomials that may otherwise be infeasible to compute.

6. Results

All of our numerical results can be found in the appendix. All of the data we
have computed is made available at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

6.1. Big Heights and Lengths of cyclotomic polynomials. To find cyclotomic
polynomials with large heights, we needed bounds on A(n). Bang [3] showed that
for n = pq, a product of two primes, that A(n) = 1; and for n = pqr, a product of
three primes that A(n) < p. Bloom [5] later proved for n = pqrs, a product of four
primes with p < q < r < s, that A(n) < p(p−1)(pq−1). Bateman, Pomerance, and
Vaughan [4] proved a more general albeit slightly weaker result: for n = p1p2 · · · pk,
a product of k distinct primes with p1 < p2 < · · · < pk,

(19) A(n) ≤ A(p1p2 · · · pk−1)
k−2∏
j=0

S(p1p2 · · · pj)

Using S(p1p2 · · · pj) ≤ A(p1p2 · · · pj)·p1p2 · · · pj and Bang’s results, they inductively
obtain that

(20) A(p1p2 · · · pk) ≤
k−2∏
i=1

p2k−i−1−1
i

For example, A(p1p2p3p4p5p6) ≤ p15
1 p

7
2p

3
3p

1
4. We use this bound to narrow our

search for large values of A(n), more specifically, A(n) for which A(n) > A(m)
for n < m. Consider, for instance, n = p1p2p3p4p5, a product of five primes
where p1 < p2 < p3 < p4 < p5. We have that A(n) < p7

1p
3
2p3 < n2.2. Given

that max1≤k≤nA(k) exceeds n2.2 for n > 43730115, we can ignore products of five
primes greater than 43730115 when searching for increasingly large heights.

Using the algorithms of sections 2 and 3, we have created a library of data on
A(n) and S(n). We include here our more noteworthy results. Table 6 (page 18)
shows those cyclotomic polynomials we have found whose height is greater than all
those of smaller index. Excluding n less than roughly 10000, those orders n for
which we obtain the largest heights also typically yield the largest lengths. Table 6
also gives logn(A(n)), which was of interest to us. Our results include the smallest
n such that A(n) > n, A(n) > n2, A(n) > n3, and A(n) > n4. Table Table 5 (page
17) shows A(n) for n, a product of the s smallest odd primes, for 1 ≤ s ≤ 9.

Equation (19) suggests that if A(n) is large, then A(np) is potentially large as
well. This appears the case in table 7 (page 19), which shows computed values
of A(n) for which A(n) > n4. Every n in table 7 is divisible by m = 40755 =
3 ·5 ·11 ·13 ·19, which appears in table 6 and has at least one of 29 or 37 as a prime
factor. 40755 · 29 = 1181895 also appears in table 6. In addition, every n in table
7 is neither divisible by 17, 23, nor (with the exception of n = 13162764615) 7.
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Many of the examples in table 7 (page 19) are multiples of m = 43730115, the
first case such that A(m) > m2. We mark these n in table 7 accordingly.

6.2. Computing heights of larger order. We currently cannot calculate Φn(z)
of order greater than 9. Calculating Φn(z) where n = 3·5·7·11·13·17·19·23·29·31,
the product of the smallest ten odd primes, would require φ(n)

2 = 122624409600
bytes (approximately 114 GB) of memory to compute the polynomial with 64-bit
precision using the sparse power series algorithm, and yet more memory using the
FFT-CRT algorithm.

We attempted to compute the cyclotomic polynomials for

n = 99660932085 = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53,

which we expect to have a very large height. We computed Φn(z) modulo 32-bit
primes by algorithm 4. Φn(z) has degree 38041436160. Storing half the coefficients
of Φn(z) with 32-bit precision requires roughly 76 GB, and so the computation had
to be done directly to disk. As such, the computation was particularly slow. We
computed five images of Φn(z), after which the hard disk crashed. We will not be
redoubling our efforts using this approach.

6.3. Flat cyclotomic polynomials. If p is a prime, then Φp(z) = 1+z+· · ·+zp−1

is trivially flat. All cyclotomic polynomials of order 2 are also flat. This is easy to
verify using the following identity (see Lenstra, [11]): Given primes p, q, let u, v be
the integers such that 0 < u < p, 0 < v < q, and uq + vp = pq + 1. Then

(21) Φpq(z) =
u−1∑
i=0

v−1∑
j=0

ziq+jp −
p−1∑
i=u

q−1∑
j=v

ziq−jp−pq.

One can check that the degrees of the terms in each sum are distinct.
Cyclotomic polynomials of order three and greater are not, in general, flat.

6.3.1. Flat cyclotomic polynomials of order 3. There are 1566382 n < 108 of the
form n = pqr, a product of three distinct odd primes, such that A(n) = 1. Bachman
[2] proved that A(pqr) = 1 if q ≡ −1 mod p and r ≡ −1 mod pq. Kaplan [14] proved
a more general result, that A(pqr) = 1 when r ≡ ±1 mod pq. For n = pqr < 108,
we find that A(n) = 1 if q ≡ 1 mod p and r ≡ ±2 mod pq. The aforementioned
families account for 414832 of these flat cyclotomic polynomials of order 3.

6.3.2. Flat cyclotomic polynomials of order 4. Noe [22] has calculated flat cyclo-
tomic polynomials of order 4, for index n < 5 · 106. We extend his result to
n < 3 · 108. There are 1389 such n, and each of these n = p1p2p3p4 satisfies

(22) p2 ≡ −1 mod p1, p3 ≡ ±1 mod p1p2, p4 ≡ ±1 mod p1p2p3.

In addition, any cyclotomic polynomial Φn(z) of order four with n = p1p2p3p4 <
3 · 108 satisfying (22) is flat.

6.3.3. Are there flat cyclotomic polynomials of order 5 or greater? For n < 6.26·108,
there is no cyclotomic polynomial Φn(z) of order 5 with height less than 4. Table
8 shows the cyclotomic polynomials of order 5 and index n such that is flatter
than any cyclotomic polynomial of order 5 and smaller index, for n < 6.26. In
an attempt to find a flat cyclotomic polynomial of order 5, we computed A(n) for
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n, a product of 5 distinct primes such that for p dividing n, n
p satisfies the set of

congruences (22). That is, we computed A(n) for n = p1p2p3p4p5 satisfying
p2 ≡ −1 mod p1, p3 ≡ −1 mod p1p2,

p4 ≡ ±1 mod p1p2p3, p5 ≡ ±1 mod p1p2p3p4.
(23)

We only consider n satisfying (23) for which, given (p1, p2, p3, p4), p5 is minimal
for its congruence class modulo p1p2p3p4, because of the following theorem from
Kaplan:

Theorem 5 (Kaplan, [13]). Let m > 0 and let p, q be primes such that m < p < q
and p ≡ q (mod m). Then A(mp) = A(mq).

We have calculated A(n) for all such n < 263. There are 5349 such n. Of these,
A(n) = 2 for 5212 cases and A(n) = 3 for the remaining ones.

We list the smallest indices n of this form for which we have computed A(n) = 2
in table 9. The data for all 5349 cases can be found at our website.

6.4. Extrema of the kth cyclotomic polynomial coefficient an(k). Let a(k) =
maxn |an(k)|, and let a∗(k) = maxn an(k) and a∗(k) = minn an(k) be the one-sided
bounds. For notational convenience, we also define

(24) a∗∗(k) = max
squarefree n

an(k) and a∗∗(k) = min
squarefree n

an(k).

It is clear that a∗∗(k) ≤ a∗(k) and a∗∗(k) ≥ a∗(k).
Bachman [1] showed that for a constant A0, and for sufficiently large k,

(25) log a∗(k) = log a∗(k) = A0

√
k

(log k)1/4

(
1 +O

(
log log k√

log k

))
.

Gallot et al. [8] computed a(k) for k ≤ 30. We calculated a(k) for k ≤ 172 using
a brute-force approach we detail below. Noe [21] calculated a(k), for k ≤ 1000 using
a brute-force approach for k ≤ 128, and a superior, fast method due to Grytczuk
and Tropak [10] for larger k.

We verify his computation up to k ≤ 172, and for those k find the smallest
index n for which we obtain |an(k)| = a(k). It is immediate from algorithm 4 that
an(k) depends on the divisors of n that are less than or equal to k. In particular,
if p and q are distinct primes that are greater than k, then an(k) = anpq(k) and
anp(k) = anq(k). Thus to calculate a∗∗(k), we need only consider an(k) for n of
the form m and mq, where m is a product of distinct primes less than or equal to
k, and q is first prime greater than k.

We used this brute-force approach to calculate a∗∗(k) and a∗∗(k) for 0 ≤ k ≤ 172.
This entailed inspection of Φn(z) for every squarefree n that is a product of primes
less than or equal to 173, the 40th prime. There are 240 > 1012 such n. We used a
variant of algorithm 4 to obtain the first 211 terms of Φn(z); instead of truncating
the power series of Φn(z) to half the degree of Φn(z), we truncate the power series
to degree 210. In addition, given odd n, we use lemma 1 to obtain the truncated
power series of Φ2n(z). Since Φ2n(z) = Φn(−z) for odd n > 1, it follows that

(26) a2n(2k) = an(2k), and a2n(2k + 1) = −an(2k + 1).

Given a∗∗n (d), for 0 ≤ d ≤ k, one can obtain a∗(k) by inspection. Suppose that
a∗(k) > a∗∗(k), then there exists some non-squarefree n for which an(k) > a∗∗(k).
Write n = mc, where m is the squarefree part of n. By lemma 2, Φn(z) = Φm(zc),
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and so if c|k, an(k) = am(k/c), otherwise an(k) = 0. Thus a∗(k) = maxd|k a∗∗(d).
Similarly, a∗(k) = mind|k a∗∗(k). Typically we find that a∗(k) = a∗∗(k).
k = 118 is the smallest k > 0 such that a(k) > k, as a∗(118) = 124.
Another related problem is, given b ∈ Z, find minimal k such that there exists n

such that an(k) = b. Define

α(b) = min
an(k)=b

k (for b ∈ Z) and

ᾱ(b) = min
|an(k)|=b

k = min(α(b), α(−b)) (for b > 0),
(27)

where the minima are taken over all pairs (n, k) such that n > 0, k ≥ 0.
In our computation of a(k) we have simultaneously computed α(b), for −927 ≤

b ≤ 927, and the smallest n for which an(α(b)) = b. Again by lemma 2, we need
only consider squarefree n to computer α(b). Suppose b 6= 0 and anp2(k) = b. Then,
as anp2(k) 6= 0, by lemma 2, p must divide k and anp(k/p) = b, so α(b) ≤ k/p < k.
Given that we know the maxima and minima of an(k) for fixed k ≤ 172, if the
minimum k we have found for which ∃n 3 an(k) = b is less than or equal to 172,
then we know we have the exact value of α(b). The same holds if the minimum
such k equals 173; however, we cannot be certain that we have the smallest n for
which an(173) = b.

Table 10 shows ᾱ(b) for selected values of b, and smallest n such that |an(ᾱ(b))| =
b, and the smallest n for which this occurs.

We extend results by Bosma [6], and by Grytczuk and Tropak [10]. Grytczuk
and Tropak found results for |b| ≤ 10. Bosma calculated results for |b| ≤ 50. We
have in fact calculated the smallest k such that an(k) = b for −927 ≤ b ≤ 927. All
of these results can be found at our website.
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7. Appendix

Table 5: A(n) for n a product of the smallest odd primes

n factorization of n A(n) logn A(n)

105 3 · 5 · 7 2 0.148937
1155 3 · 5 · 7 · 11 3 0.155791

15015 3 · 5 · 7 · 11 · 13 23 0.326043

255255 3 · 5 · 7 · 11 · 13 · 17 532 0.504147
4849845 3 · 5 · 7 · 11 · 13 · 17 · 19 *669606 0.871381

111546435 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 8161018310 1.231662
3234846615 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 2888582082500892851 1.941216

*(Koshiba, 2002 [15]).
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Table 6: n such that A(n) > A(m) for m < n

n A(n) logn A(n)

1 1 -
105 2 0.148937
385 3 0.184540

1365 4 0.192037
1785 5 0.214959
2805 6 0.225686

3135 7 0.241716
6545 9 0.250069

10465 14 0.285125

11305 23 0.335958
17255 25 0.329943

20615 27 0.331781
26565 59 0.400255
40755 359 0.554229

106743 397 0.516829
171717 434 0.503836
255255 532 0.504147

279565 1182 0.564147
327845 31010 0.814317
707455 35111 0.777039

886445 44125 0.780927
983535 59815 0.797093

1181895 14102773 1.177309

1752465 14703509 1.147954
3949491 56938657 1.175678

8070699 74989473 1.140162

10163195 1376877780831 1.732388
13441645 1475674234751 1.707101

15069565 1666495909761 1.702652

30489585 2201904353336 1.649191
37495115 2286541988726 1.631796

40324935 2699208408726 1.634490

43730115 862550638890874931 2.347376
169828113 *31484567640915734941 2.369146

185626077 42337944402802720258 2.373635
416690995 80103182105128365570406901971 3.353164
437017385 86711753206816303264095919005 3.349121

712407185 111859370951526698803198257925 3.281324
1250072985 137565800042644454188531306886 3.203113

1311052155 192892314415997583551731009410 3.211947

1880394945 64540997036010911566826446181523888971563 4.400339
2317696095 67075962666923019823602030663153118803367 4.359458

13162764615 **5465808676670557863536977958031695430428633 4.223361

*First instance such that A(n) > 264

**We have yet to show that A(13162764615) > A(m) for all m < 13162764615.
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Table 7: A(n) such that A(n) > n4

n A(n) logn A(n)

*1880394945 64540997036010911566826446181523888971563 4.400339
*2317696095 67075962666923019823602030663153118803367 4.359458
*2580076785 44178992295210157476612718521873077815356 4.318615

*2667537015 50978590999382303149290759045486931349075 4.318577
2693538705 41311315644168801150352807111933599181273 4.306965

*2929917705 38986521325602066434123587685733770107831 4.287687

2998467615 50703798374791014119206172479361263858737 4.295185
3100110585 37023124240370602498540690923261030138801 4.274245
3405039495 41344572168478125565953675666880875630891 4.261005

3436583865 29420710476505598428925342851511436269885 4.243720
*3629599545 31146417203818726557508589352280096726851 4.235775

3695785665 27544659617064926303551956412846199778051 4.226722
3821066535 31128120202581145792970998453196458758768 4.225879
3825631095 40071361165347422625605753503633105870103 4.237096

3955313505 27667056853522527517062927200210380189261 4.213942
4196909145 24175660733238789429230720957313695678993 4.196578
4218183255 31889907167996287439150048606465589433551 4.208117

4253640105 24726477535222303105776318525136248038167 4.195053
4344360735 32507457200647115397398921638675751619003 4.203392

*4416741615 30381795842095831309232742046965986663843 4.197220

4672030935 22760422406095676210121193519495242514072 4.173655
*4679122305 24693521216952698497060423547227286104011 4.177032

4715312745 18998617883089513487054213546426519137567 4.163816

*4766582535 27232450597992733695751246276504205431221 4.177952
*13162764615 5465808676670557863536977958031695430428633 4.223361

*multiple of 43730115

Table 8: Φn(z) of order 5 that are flatter than all Φm(z) of order 5 for m < n,
for n ≤ 6.26 · 108

n factorization of n A(n)

15015 3 · 5 · 7 · 11 · 13 23

23205 3 · 5 · 7 · 13 · 17 21

31395 3 · 5 · 7 · 13 · 23 15
574665 3 · 5 · 7 · 13 · 421 14

774795 3 · 5 · 7 · 47 · 157 13

1331715 3 · 5 · 7 · 11 · 1153 12
2666895 3 · 5 · 7 · 11 · 2309 9

3725085 3 · 5 · 7 · 13 · 2729 7
40765935 3 · 5 · 7 · 43 · 9029 6

48713385 3 · 5 · 7 · 47 · 9871 5

76762245 3 · 5 · 7 · 59 · 12391 4
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Table 9: Φn(z) of order 5 such that A(n) = 2

n factorization of n

1147113361785 3 · 5 · 29 · 1741 · 1514671
2294224451565 3 · 5 · 29 · 1741 · 3029339
2576062979535 3 · 5 · 29 · 2609 · 2269829

7157926096635 3 · 5 · 29 · 4349 · 3783629
7157929880265 3 · 5 · 29 · 4349 · 3783631

14031384951165 3 · 5 · 29 · 6089 · 5297431

15456385821615 3 · 5 · 29 · 2609 · 13618981
36654908721735 3 · 5 · 29 · 6959 · 12108659
39282436838685 3 · 5 · 59 · 3541 · 12535141

44151142013985 3 · 5 · 59 · 5309 · 9396929
44151151410915 3 · 5 · 59 · 5309 · 9396931

46392857518515 3 · 5 · 29 · 7829 · 13622461

Table 10: ᾱ(b), the least k for which b occurs as |an(k)|; and the least n for
which |an

(
ᾱ(k)

)
| = b, for select b ≤ 927

a ᾱ(b) n

0 1 4

1 0 1
2 7 105

3 17 323323

4 23 1062347
5 30 37182145

6 36 215656441

7 43 65552121635
8 46 845904650955

9 47 75145115045

10 52 30704573184285
20 70 152125131763605

30 82 307444891294245705

40 89 1352450076803386856295
50 95 3929160775540133527939545

60 99 194825753248734022710250308207855
70 100 163957329252276946718326137628485
80 106 4281025919618354440889355

90 106 1200321465765450313917852148868594655
100 112 23806785138997669045785703155

200 132 162938425981534060763635083977029188109663335

300 143 2326975571029326286598990252532796074781464457755
400 153 5412131370764127757636390017210695

500 158 5921057432644596149106845426292101971454108035

600 163 50967866897743398269290966947741571435
700 167 41211036991280460777846257111155083155

800 170 523848308647668419809505921108741216619845

900 173 *480644324429304014052020896687401734836765
927 173 *1269140374116844321897058519227927779943780451272073121291475705

*There may exist smaller n for which |an(k)| = b.


