Initially-known mathematical functions in Maple  (copied from the Maple help file)

 

 
 
 
 

These mathematical functions are known to Maple, in that they have simplification procedures defined and/or are known to one or more of: diff, evalc, evalf, expand, series, simplify

Back to IntegerRelations.
 
abs                 - absolute value of real or complex number
AiryAi  
AiryAiZeros  
AiryBi  
AiryBiZeros          - Airywave functions and their negative real zeros
AngerJ              - Anger J function
argument            -argument of a complex number
bernoulli            -Bernoulli numbers and polynomials
BesselI  
BesselJ             - modified Bessel functions and Bessel functions of the 1st kind
BesselJZeros         - non negative realzeros of Bessel J
BesselK  
BesselY             - modified Bessel functions and Bessel functions of the 2nd kind
BesselYZeros         - positive realzeros of Bessel Y
Beta                - Beta function
binomial           - binomial coefficients
ceil                - smallest integer greater than or equal to a number
Chi                 - hyperbolic cosine integral
Ci                  - cosine integral
conjugate            -conjugate of a complex number or expression
csgn                - complex ``half-plane'' signum function
dilog              - dilogarithm function
Dirac               - Dirac delta function
Ei    - exponential integrals
EllipticCE  
EllipticCK  
EllipticCPi  
EllipticE  
EllipticF  
EllipticK  
EllipticModulus  
EllipticNome  
EllipticPi          - Complete incomplete and complementary elliptic
                     integrals and related functions  
erf                 - error function
erfc                - complementary error function and its
                     iterated integrals  
erfi               - imaginary error function
euler               - Euler numbers and polynomials
exp                 - exponential function
factorial            -factorial function
floor               - greatest integer less than or equal to a number
frac               - fractional part of a number
FresnelC  
Fresnelf  
Fresnelg  
FresnelS  - Fresnel integrals and auxiliary functions
GAMMA  - Gamma and incomplete Gamma functions
GaussAGM  - Gauss arithmetic geometric mean
HankelH1  
HankelH2        - Hankel functions (Bessel functions of the 3rd kind)
harmonic    - partial sum of the harmonic series
Heaviside  - Heaviside step function
hypergeom  - generalized hypergeometric function
ilog10  
ilog  - integer logarithms
Im  - imaginary part of a complex number
JacobiAM  
JacobiCN    
JacobiCD  
JacobiCS  
JacobiDN  
JacobiDC  
JacobiDS  
JacobiNC  
JacobiND  
JacobiNS  
JacobiSC  
JacobiSD  
JacobiSN             - Jacobi elliptic functions
JacobiTheta1  
JacobiTheta2  
JacobiTheta3  
JacobiTheta4          - Jacobi theta functions
JacobiZeta            -Jacobi Zeta function
KelvinBer  
KelvinBei  
KelvinHer  
KelvinHei  
KelvinKer  
KelvinKei             -Kelvin functions
KummerM  
KummerU             - Kummer functions
LegendreP  
LegendreQ           -Legendre functions
LerchPhi           - Lerch's Phi function
Li                   - logarithmic integral
ln                  - natural logarithm (logarithm with base  exp(1) = 2.71...)
   
lnGAMMA              - log-Gamma function
log                  - logarithm to arbitrary base
log10              - log to the base 10
LommelS1  
LommelS2            - Lommel functions
MeijerG              - a modified MeijerG function
max  
min               - maximum/minimum of a sequence of real values
pochhammer           - pochhammersymbol
polar               - polar representation of complex numbers
polylog              - polylogarithm function
Psi                  - polygamma function
Re                   - real part of a complex number
round               - nearest integer to a number
signum               - sign of a real or complex number
Shi                  - hyperbolic sine integral
Si                 - sine integral
sqrt                 - square root
Ssi                  - shifted sine integral
StruveH  
StruveL              - Struve functions
surd                - non-principal root function
trunc               - nearest integer to a number in the direction of 0
LambertW             - Lambert W function
WeberE               - Weber E function
WeierstrassP          - WeierstrassP-function
WeierstrassPPrime     - Derivative of Weierstrass P-function
WeierstrassZeta       - Weierstrass zeta-function
WeierstrassSigma      - Weierstrass sigma-function
WhittakerM  
WhittakerW            -Whittaker functions
Zeta                - Riemann and Hurwitz zeta functions
 

The trigonometric and hyperbolic functions:
sin,  cos,  tan,  sec,
csc,  cot,  sinh, cosh,
tanh, sech, csch, coth

The inverse trigonometric and inverse hyperbolic functions:
arcsin,  arccos,  arctan,  arcsec,  arccsc,  arccot,
arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth

two-argument arctan: arctan(y,x) = argument(x+I*y) in (-Pi,Pi]
 

Back to IntegerRelations.


Agnes Szanto

Last modified: Thu May 4 12:05:28 PDT 2000