MACM 316 - Spring 2005: Assignment 5

Web Site: www.ceem.sfu.ca/ ${ }^{\text {hle/teaching/MACM316/ }}$
Due: Monday, April 4

R.L. Burden, J.D. Faires. Numerical Analysis, seventh edition.

Section 4.1: 3a, 4a.
Section 4.2: 8, 13a (the first part).
Section 4.3: 1c, 2c, 7, 13.
Section 4.4: 4.
Section 4.5: 7.
Section 4.6: 2a.
Section 5.1: 1a (no need to find the solution), 5.
Section 5.2: 1a, 2a.
Implement Euler's method in Maple.
EulerMethod := proc(ode,yoft,rangeoft,alpha,N)
end proc:
The output from EulerMethod is of the from

$$
\left[\left[t_{0}, w_{0}\right],\left[t_{1}, w_{1}\right], \ldots,\left[t_{N-1}, w_{N-1}\right],\left[t_{N}, w_{N}\right]\right]
$$

where w_{i} approximates $y\left(t_{i}\right)$ for $0 \leq i \leq N$. Let
ode := $\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\mathrm{y}(\mathrm{t}) *(2.5 * \mathrm{t}-\mathrm{t} \wedge 2 * \operatorname{sqrt}(\mathrm{y}(\mathrm{t})))$;
Run your program with the following input:

- EulerMethod(ode,y(t),0..2.,1.,5);
- EulerMethod(ode,y(t),0..2.,1.,20);
- EulerMethod(ode,y(t),0..2.,1.,40);

Section 5.3: 1a, 2a.
Section 5.4: 10a.
Section 5.10: 1.

