Floating Point Number Systems

Simon Fraser University - Surrey Campus
MACM 316 - Spring 2005
Instructor: Ha Le

Overview

- Real number system
- Examples
- Absolute and relative errors
- Floating point numbers
- Roundoff error analysis
- Conditioning and stability
- A stability analysis
- Rate of convergence

Real number system

- The arithmetic of the mathematically defined real number system, denoted by \mathbb{R}, is used.
- \mathbb{R} is infinite in
(1) extent, i.e., there are numbers $x \in \mathbb{R}$ such that $|x|$ is arbitrarily large.
(2) density, i.e., any interval $I=\{x \mid a \leq x \leq b\}$ of \mathbb{R} is an infinite set.
- Computer systems can only represent finite sets of numbers, so all the actual implementations of algorithms must use approximations to \mathbb{R} and inexact arithmetic.

Example 1: Evaluate $I_{n}=\int_{0}^{1} \frac{x^{n}}{x+\alpha} d x$

$$
\left\{\begin{aligned}
I_{0} & =\int_{0}^{1} \frac{1}{(x+\alpha)} d x \\
I_{n}+\alpha I_{n-1} & \left.=\int_{0}^{1} \frac{x^{n}+\alpha x^{n-1}}{x+\alpha} d x=\frac{\alpha+1}{\alpha}\right) \\
\Longrightarrow I_{n} & =\frac{1}{n}-\alpha I_{n-1}, \quad I_{0}=\ln \left(\frac{\alpha+1}{\alpha}\right)
\end{aligned}\right.
$$

Using single precision floating point arithmetic:

$$
\alpha=.5 \Rightarrow I_{100}=6.64 \times 10^{-3}, \quad \alpha=2.0 \Rightarrow I_{100}=2.1 \times 10^{22} .
$$

Note. If $\alpha>1,(x+\alpha)>1$ for $0 \leq x \leq 1$. Hence,

$$
\int_{0}^{1} \frac{x^{n}}{x+\alpha} d x \leq \int_{0}^{1} x^{n} d x=\frac{1}{n+1}
$$

Example 2: Evaluate $e^{-5.5}$

Recall. $e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\cdots$.
Using a calculator which carries five significant figures.
Method 1.

$$
x_{1}=e^{-5.5}=\sum_{n=0}^{20} \frac{(-5.5)^{n}}{n!}=.0026363
$$

Method 2.

$$
x_{2}=e^{-5.5}=\frac{1}{e^{5.5}}=\frac{1}{\sum_{n=0}^{20} \frac{(5.5)^{n}}{n!}}=.0040865
$$

Note. The correct answer, up to five significant digits, is

$$
x_{e}=e^{-5.5}=.0040868
$$

Absolute and Relative Error

Computed result: x, correct mathematical result: x_{e}.

$$
E r r_{a b s}=\left|x_{e}-x\right|, \quad E r r_{r e l}=\frac{\left|x_{e}-x\right|}{\left|x_{e}\right|}
$$

Definition. The significant digits in a number are the digits starting with the first, i.e., leftmost, nonzero digit (e.g., . $00 \underbrace{40868}$).

- x is said to approximate x_{e} to about s significant digits if the relative error satisfies

$$
0.5 \times 10^{-s} \leq \frac{\left|x_{e}-x\right|}{\left|x_{e}\right|}<5.0 \times 10^{-s}
$$

Example 3: Relative Error and Significant Digits

In Example 2,

$$
x_{e}=.0040868, \quad x_{1}=.0026363, \quad x_{2}=.0040865
$$

Method 1.

$$
0.5 \times 10^{-1} \leq E r r_{r e l}=\frac{\left|x_{e}-x_{1}\right|}{\left|x_{e}\right|} \approx 3.5 \times 10^{-1}<5.0 \times 10^{-1}
$$

Hence, x_{1} has approximately one significant digit correct (in this example, x_{1} has zero correct digits).
Method 2.

$$
0.5 \times 10^{-4} \leq E r r_{r e l}=\frac{\left|x_{e}-x_{2}\right|}{\left|x_{e}\right|} \approx 0.7 \times 10^{-4}<5.0 \times 10^{-4}
$$

Hence, x_{2} has approximately four significant digits correct (in this example, x_{2} is indeed correct to four significant digits).

Representation of Numbers in \mathbb{R}

Let $\beta \in \mathbb{N} \backslash\{0\}$ be the base for a number system, e.g.,

$$
\beta=10 \text { (decimal), } \beta=2 \text { (binary), } \beta=16 \text { (hexadecimal). }
$$

Each $x \in \mathbb{R}$ can be represented by an infinite base β expansion in the normalized form

$$
. d_{0} d_{1} d_{2} \ldots d_{t-1} d_{t} \ldots \times \beta^{p}
$$

where $p \in \mathbb{Z}, d_{k}$ are digits in base β, i.e. $d_{k} \in\{0,1, \ldots, \beta-1\}$, and $d_{0} \neq 0$.

Example.

$$
732.5051 \Longrightarrow .7325051 \times 10^{3}, \quad-0.005612 \Longrightarrow-0.5612 \times 10^{-2}
$$

Floating Point Numbers

Recall. \mathbb{R} is infinite in extent and density.
Floating point number systems limit

- the infinite density of \mathbb{R} by representing only a finite number, t, of digits in the expansion;
- the infinite extent of \mathbb{R} by representing only a finite number of integer values for the exponent p, i.e., $L \leq p \leq U$ for specified integers $L>0$ and $U>0$.

Therefore, each number in such a system is precisely of the form

$$
. d_{0} d_{1} d_{2} \ldots d_{t-1} \times \beta^{p}, \quad L \leq p \leq U, \quad d_{0} \neq 0
$$

or 0 (a very special floating point number).

Two Standardized Systems

A floating point number system is denoted by $F(\beta, t, L, U)$ or simply by F when the parameters are understood.

Two standardized systems for digital computers widely used in the design of software and hardware:

IEEE single precision: $\{\beta=2 ; t=24 ; L=-127 ; U=128\}$,
IEEE double precision: $\{\beta=2 ; t=53 ; L=-1023 ; U=1024\}$.
Note. An exception occurs if the exponent is out of range, which leads to a state called overflow if the exponent is too large, or underflow if the exponent is too small.

Truncation of a Real Number

Let

$$
x=. d_{0} d_{1} \ldots d_{n-1} d_{n} \ldots d_{t-1} \times \beta^{p} .
$$

Using n digits:

- Rounding:

$$
x= \begin{cases}. d_{0} d_{1} \ldots d_{n-1} \times \beta^{p} & \text { if } 0 \leq d_{n} \leq 4 \\ . d_{0} d_{1} \ldots\left(d_{n-1}+1\right) \times \beta^{p} & \text { if } 5 \leq d_{n} \leq 9\end{cases}
$$

- Chopping:

$$
x=. d_{0} d_{1} \ldots d_{n-1} \times \beta^{p} .
$$

Relationship between $x \in \mathbb{R}$ and $\mathrm{fl}(x) \in F$

For $x \in \mathbb{R}$, let $\mathrm{f}(x) \in F(\beta, t, L, U)$ be its floating point approximation. Then

$$
\begin{equation*}
\frac{|x-\mathrm{fl}(x)|}{|x|} \leq \mathcal{E} \tag{1}
\end{equation*}
$$

\mathcal{E} : machine epsilon, or unit roundoff error.

$$
\mathcal{E}= \begin{cases}\frac{1}{2} \beta^{1-t} & \text { for rounding } \\ \beta^{1-t} & \text { for chopping }\end{cases}
$$

By (1), $\mathrm{fl}(x)-x=\delta x$, for some δ such that $|\delta| \leq \mathcal{E}$. Hence, $\mathrm{fl}(x)=x(1+\delta),-\mathcal{E} \leq \delta \leq \mathcal{E}$.

Example. Denote the addition operator in F by \oplus. For $w, z \in F$, $w \oplus z=\mathrm{fl}(w+z)=(w+z)(1+\delta)$.

Roundoff Error Analysis: an Exercise

How does $(a \oplus b) \oplus c$ differ from the true sum $a+b+c$?

$$
\begin{aligned}
&(a \oplus b) \oplus c=(a+b)\left(1+\delta_{1}\right) \oplus c=\left((a+b)\left(1+\delta_{1}\right)+c\right)\left(1+\delta_{2}\right) \\
&=(a+b+c)+(a+b) \delta_{1}+(a+b+c) \delta_{2}+(a+b) \delta_{1} \delta_{2} . \\
& \Longrightarrow|(a+b+c)-((a \oplus b) \oplus c)| \leq(|a|+|b|+|c|)\left(\left|\delta_{1}\right|+\left|\delta_{2}\right|+\left|\delta_{1}\right|\left|\delta_{2}\right|\right)
\end{aligned}
$$

If $(a+b+c) \neq 0$, then

$$
E r r_{r e l}=\frac{|(a+b+c)-((a \oplus b) \oplus c)|}{|a+b+c|} \leq \frac{|a|+|b|+|c|}{|a+b+c|}\left(2 \mathcal{E}+\mathcal{E}^{2}\right)
$$

- If $|a+b+c| \approx|a|+|b|+|c|$ (e.g., $a, b, c \in \mathbb{R}^{+}$, or $a, b, c \in \mathbb{R}^{-}$, then $E r r_{r e l}$ is bounded by $2 \mathcal{E}+\mathcal{E}^{2}$ which is small;
- If $|a+b+c| \ll|a|+|b|+|c|$, then $E r r_{r e l}$ can be quite large.

Roundoff Error Analysis: a Generalization

- Addition of N numbers. If $\sum_{i=1}^{N} x_{i} \neq 0$, then

$$
\text { Err }_{\text {rel }}=\frac{\left|\sum_{i=1}^{N} x_{i}-\mathrm{f}\left(\sum_{i=1}^{N} x_{i}\right)\right|}{\left|\sum_{i=1}^{N} x_{i}\right|} \leq \frac{\sum_{i=1}^{N}\left|x_{i}\right|}{\mid \sum_{i=1}^{N} x_{i}} 1.01 \mathrm{NE} .
$$

(The appearance of the factor 1.01 is an artificial technicality.)

- Product of N numbers. If $x_{i} \neq 0,1 \leq i \leq N$, then

$$
\operatorname{Err}_{r e l}=\frac{\left|\prod_{i=1}^{N} x_{i}-\mathrm{f}\left(\prod_{i=1}^{N} x_{i}\right)\right|}{\left|\prod_{i=1}^{N} x_{i}\right|} \leq 1.01 N \mathcal{E} .
$$

Roundoff Error Analysis: an Example

In $F(10,5,-10,10)$, let

$$
a=10000 ., \quad b=3.1416, \quad c=-10000 .
$$

Then $|a|+|b|+|c|=20003.1416$ and $a+b+c=3.1416$. Hence,

$$
0.5 \times 10^{0} \leq E r r_{r e l} \leq 6367.2\left(2 \mathcal{E}+\mathcal{E}^{2}\right) \approx 0.6<5.0 \times 10^{0}
$$

This relative error implies that there may be no significant digits correct in the result. Indeed,

$$
(a \oplus b) \oplus c=10003 . \oplus(-10000 .)=3.0000 .
$$

Therefore, the computed sum actually has one significant digit correct.

Conditioning

Consider a Problem \mathcal{P} with input values \mathcal{I} and output values \mathcal{O}. If a relative change of size $\Delta \mathcal{I}$ in one or more input values causes a relative change in the mathematically correct output values which is guaranteed to be small (i.e., not too much larger than $\Delta \mathcal{I}$), then \mathcal{P} is said to be well-conditioned. Otherwise, \mathcal{P} is said to be ill-conditioned.

Remark. The above definition is independent of any particular choice of algorithm and independent of any particular number system. It is a statement about the mathematical problem.

Condition Number

$$
\mathcal{P}: \mathcal{I}=\{x\}, \quad \mathcal{O}=\{f(x)\} .
$$

From Taylor series expansion:

$$
\begin{aligned}
f(x+\Delta x) & =f(x)+f^{\prime}(x) \Delta x+\frac{1}{2} f^{\prime \prime}(x) \Delta x^{2}+O\left(\Delta x^{3}\right) \\
& \approx f(x)+f^{\prime}(x) \Delta x
\end{aligned}
$$

assuming that $|\Delta x|$ is small. Hence,

$$
\frac{|f(x)-f(x+\Delta x)|}{|f(x)|} \approx \frac{\left|f^{\prime}(x)\right||\Delta x|}{|f(x)|}=\underbrace{\frac{|x|\left|f^{\prime}(x)\right|}{|f(x)|}}_{\kappa(\mathcal{P})} \times \frac{|\Delta x|}{|x|}
$$

$\kappa(\mathcal{P})$: the condition number of \mathcal{P}.

Condition Number: an Example

In Example 2, $\mathcal{I}=\{x=-5.5\}, \mathcal{O}=\left\{f(x)=e^{x}\right\}$, and $\kappa(\mathcal{P})=|x|=5.5$. Hence, roundoff errors (in relative error) of size \mathcal{E} can lead to relative errors in the output bounded by

$$
\operatorname{Err}_{r e l} \approx \kappa(\mathcal{P}) \mathcal{E}
$$

For example, if $\mathcal{E} \approx 10^{-5}$, then

$$
0.5 \times 10^{-4} \leq \operatorname{Err}_{r e l}<5.0 \times 10^{-4},
$$

and we should expect to have about four significant digits correct.

Stability

Consider a Problem \mathcal{P} with condition number $\kappa(\mathcal{P})$, and suppose that we apply Algorithm \mathcal{A} to solve \mathcal{P}. If we can guarantee that the computed output values from \mathcal{A} will have relative errors not too much larger than the errors due to the condition number $\kappa(\mathcal{P})$, then \mathcal{A} is said to be stable. Otherwise, if the computed output values from \mathcal{A} can have much larger relative errors, then \mathcal{A} is said to be unstable.

Example. For the Problem \mathcal{P} in Example 2, \mathcal{P} is well-conditioned. Method 1 is unstable, while Method 2 is stable.

A Stability Analysis

In Example 1, computing $I_{n}=\int_{0}^{1} \frac{x^{n}}{x+\alpha} d x$ is reduced to solving

$$
I_{n}=\frac{1}{n}-\alpha I_{n-1}, \quad I_{0}=\ln \left(\frac{\alpha+1}{\alpha}\right)
$$

We state without proof that this is a well-conditioned problem. Suppose that the floating point representation of I_{0} introduces some error ϵ_{0}. For simplicity, assume that no other errors are introduced at each stage of the computation after I_{0} is computed. Let $\left(I_{n}\right)_{A}$ and $\left(I_{n}\right)_{E}$ be the approximate value and the exact value of I_{n}, respectively. Then

$$
\left(I_{n}\right)_{E}=\frac{1}{n}-\alpha\left(I_{n-1}\right)_{E}, \quad\left(I_{n}\right)_{A}=\frac{1}{n}-\alpha\left(I_{n-1}\right)_{A}
$$

Set $\epsilon_{n}=\left(I_{n}\right)_{A}-\left(I_{n}\right)_{E}$. Then

$$
\epsilon_{n}=(-\alpha) \epsilon_{n-1}=(-\alpha)^{n} \epsilon_{0}
$$

If $|\alpha|>1$, then any initial error ϵ_{0} is magnified by an unbounded amount as $n \rightarrow \infty$. On the other hand, if $|\alpha|<1$, then any initial error is damped out. We conclude that the algorithm is stable if $|\alpha|<1$, and unstable if $|\alpha|>1$.

Taylor Series

The set of all functions that have n continuous derivatives on a set X is denoted $C^{n}(X)$, and the set of functions that have derivatives of all orders on X is denoted $C^{\infty}(X)$, where X consists of all numbers for which the functions are defined.

Taylor's theorem provides the most important tool for this course.

Taylor's Theorem

Suppose $f \in C^{n}[a, b]$, that $f^{(n+1)}$ exists on $[a, b]$, and $x_{0} \in[a, b]$. For every $x \in[a, b]$, there exists a number $\xi(x)$ between x_{0} and x with

$$
f(x)=\underbrace{P_{n}(x)}_{n \text {th Taylor polynomial }}+\underbrace{R_{n}(x)}_{\text {remainder term (or truncation error) }}
$$

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
R_{n}(x) & =\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1}
\end{aligned}
$$

Taylor Series: an Example

- Find the third degree Taylor polynomial $P_{3}(x)$ for $f(x)=\sin x$ at the expansion point $x_{0}=0$.

Note that $f \in C^{\infty}(\mathbb{R})$. Hence, Taylor's theorem is applicable.

$$
\begin{gathered}
P_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} . \\
f^{\prime}(x)=\cos x \quad \Longrightarrow \quad f^{\prime}(0)=\cos 0=1, \\
f^{\prime \prime}(x)=-\sin x \quad \Longrightarrow \quad f^{\prime \prime}(0)=-\sin 0=0 \\
\left.f^{\prime \prime \prime}(x)=-\cos x \quad \Longrightarrow \quad f^{\prime \prime \prime} 0\right)=-\cos 0=-1
\end{gathered}
$$

Also, $f(0)=\sin 0=0$. Hence, $P_{3}(x)=x-\frac{x^{3}}{6}$.

- What about the truncation error ?

$$
R_{3}(x)=\frac{f^{\prime \prime \prime \prime}(\xi)}{4!} x^{4}=\frac{\sin \xi}{24} x^{4} \text { where } \xi \in(0, x)
$$

- How big could the error be at $x=\pi / 2$?

$$
R_{3}\left(\frac{\pi}{2}\right)=\frac{\sin \xi}{24}\left(\frac{\pi}{2}\right)^{4} \text { where } \xi \in\left(0, \frac{\pi}{2}\right)
$$

Since $|\sin \xi| \leq 1$ for all $\xi \in\left(0, \frac{\pi}{2}\right)$,

$$
\left|R_{3}\left(\frac{\pi}{2}\right)\right| \leq \frac{1}{24}\left(\frac{\pi}{2}\right)^{4} \approx 2.025
$$

- Actual error ?

$$
\left|f\left(\frac{\pi}{2}\right)-P_{3}\left(\frac{\pi}{2}\right)\right|=\left|\sin \frac{\pi}{2}-\left(\frac{\pi}{2}-\frac{(\pi / 2)^{3}}{6}\right)\right| \approx 0.075
$$

In this example, the error bound is much larger than the actual error.

Rate of Convergence

Throughout this course, we will study numerical methods which solve a problem by constructing a sequence of (hopefully) better and better approximations which converge to the required solution.
A technique is required to compare the convergence rates of different methods.

Definition. Suppose $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α. If a positive constant K exists with

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right| \quad \text { for large } n,
$$

then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with rate of convergence $O\left(\beta_{n}\right)$. It is indicated by writing $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$.

In nearly every situation, we use

$$
\beta_{n}=\frac{1}{n^{p}} \quad \text { for some number } p>0
$$

Usually we compare how fast $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \rightarrow \alpha$ with how fast $\beta_{n}=1 / n^{p} \rightarrow 0$.

Example. $\left\{\alpha_{n}\right\}_{n=1}^{\infty} \rightarrow \alpha$ like $1 / n$ or $1 / n^{2}$.

$$
\begin{array}{ll}
\frac{1}{n^{2}} \rightarrow 0 & \text { faster than } \frac{1}{n} \\
\frac{1}{n^{3}} \rightarrow 0 & \text { faster than } \\
\frac{1}{n^{2}}
\end{array}
$$

We are most interested in the largest value of p with $\alpha_{n}=\alpha+O\left(1 / n^{p}\right)$.

To find the rate of convergence, we can use the definition: find the largest p such that

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right|=K \frac{1}{n^{p}} \quad \text { for } n \text { large },
$$

or equivalently, find the largest p so that

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{\left|\beta_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{1 / n^{p}}=K .
$$

Note. K must be a constant, and cannot be " ∞ ".

Rate of Convergence: an Example

For $\alpha_{n}=(n+1) / n^{2}, \hat{\alpha}_{n}=(n+3) / n^{3}$,
$\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \hat{\alpha}_{n}=0=\alpha$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{1 / n^{p}}=\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}} n^{p}= \begin{cases}1 & \text { if } p=1 \\
\infty & \text { if } p \geq 2\end{cases} \\
& \lim _{n \rightarrow \infty} \frac{\left|\hat{\alpha}_{n}-\alpha\right|}{1 / n^{p}}=\lim _{n \rightarrow \infty} \frac{n+3}{n^{3}} n^{p}= \begin{cases}0 & \text { if } p=1 \\
1 & \text { if } p=2 \\
\infty & \text { if } p \geq 3\end{cases}
\end{aligned}
$$

Hence, $\alpha_{n}=0+O(1 / n)$, and $\hat{\alpha}_{n}=0+O\left(1 / n^{2}\right)$.

Rate of Convergence: another Example

For $\alpha_{n}=\sin (1 / n)$, we have $\lim _{n \rightarrow \infty} \alpha_{n}=0$. For all $n \in \mathbb{N} \backslash\{0\}$, $\sin (1 / n)>0$. Hence, to find the rate of convergence of α_{n}, we need to find the largest p so that

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha\right|}{\left|\beta_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|\sin (1 / n)-0|}{1 / n^{p}}=\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n^{p}}=K
$$

Use change of variable $h=1 / n: \lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n^{p}} \equiv \lim _{h \rightarrow 0} \frac{\sin h}{h^{p}}$.
Apply Taylor series expansion to $\sin h$ at $h=0$:

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h^{p}}=\lim _{h \rightarrow 0} \frac{h-h^{3} / 6+\cdots}{h^{p}}= \begin{cases}1 & \text { if } p=1 \\ \infty & \text { if } p \in \mathbb{N} \backslash\{0,1\}\end{cases}
$$

Hence, the rate of convergence is $O(h)$ or $O(1 / n)$.

Rate of Convergence for Functions

Suppose that $\lim _{h \rightarrow 0} G(h)=0$ and $\lim _{h \rightarrow 0} F(h)=L$. If a positive constant K exists with

$$
|F(h)-L| \leq K|G(h)|, \quad \text { for sufficiently small } h,
$$

then we write $F(h)=L+O(G(h))$.
In general, $G(h)=h^{p}$, where $p>0$, and we are interested in finding the largest value of p for which $F(h)=L+O\left(h^{p}\right)$.

Rate of Convergence for Functions: an Example

Let $F(h)=\cos h+\frac{1}{2} h^{2}$. Then $L=\lim _{h \rightarrow 0} F(h)=1$. We have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{|F(h)-L|}{h^{p}} & =\lim _{h \rightarrow 0} \frac{\cos h+1 / 2 h^{2}-1}{h^{p}} \\
& =\lim _{h \rightarrow 0} \frac{\left(1-1 / 2 h^{2}+1 / 24 h^{4}-\cdots\right)+1 / 2 h^{2}-1}{h^{p}} \\
& =\lim _{h \rightarrow 0} \frac{1 / 24 h^{4}-\cdots}{h^{p}} \\
& = \begin{cases}1 / 24 & \text { if } p=4, \\
\infty & \text { if } p>4 .\end{cases}
\end{aligned}
$$

Hence, $F(h)=1+O\left(h^{4}\right)$.

