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Floating Point Number Systems

Simon Fraser University – Surrey Campus

MACM 316 – Spring 2005

Instructor: Ha Le
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Overview

• Real number system

• Examples

• Absolute and relative errors

• Floating point numbers

• Roundoff error analysis

• Conditioning and stability

• A stability analysis

• Rate of convergence
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Real number system

• The arithmetic of the mathematically defined real number

system, denoted by � , is used.

• � is infinite in

(1) extent, i.e., there are numbers x ∈ � such that |x| is

arbitrarily large.

(2) density, i.e., any interval I = {x | a ≤ x ≤ b} of � is an

infinite set.

• Computer systems can only represent finite sets of numbers, so

all the actual implementations of algorithms must use

approximations to � and inexact arithmetic.
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Example 1: Evaluate In =

∫
1

0

x
n

x + α
dx







I0 =

∫ 1

0

1

(x + α)
dx = ln

(
α + 1

α

)

In + α In−1 =

∫ 1

0

xn + α xn−1

x + α
dx =

1

n

=⇒ In =
1

n
− α In−1, I0 = ln

(
α + 1

α

)

Using single precision floating point arithmetic:

α = .5 ⇒ I100 = 6.64 × 10−3, α = 2.0 ⇒ I100 = 2.1 × 1022.

Note. If α > 1, (x + α) > 1 for 0 ≤ x ≤ 1. Hence,
∫ 1

0

xn

x + α
dx ≤

∫ 1

0

xndx =
1

n + 1
.
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Example 2: Evaluate e
−5.5

Recall. ey =
∞∑

n=0

yn

n !
= 1 + y +

y2

2 !
+

y3

3 !
+ · · · .

Using a calculator which carries five significant figures.

Method 1.

x1 = e−5.5 =

20∑

n=0

(−5.5)n

n !
= .0026363

Method 2.

x2 = e−5.5 =
1

e5.5
=

1
∑20

n=0
(5.5)n

n !

= .0040865

Note. The correct answer, up to five significant digits, is

xe = e−5.5 = .0040868
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Absolute and Relative Error

Computed result: x, correct mathematical result: xe.

Errabs = |xe − x| , Errrel =
|xe − x|

|xe|

Definition. The significant digits in a number are the digits starting

with the first, i.e., leftmost, nonzero digit (e.g., .00 40868
︸ ︷︷ ︸

).

• x is said to approximate xe to about s significant digits if the

relative error satisfies

0.5 × 10−s ≤
|xe − x|

|xe|
< 5.0 × 10−s.
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Example 3: Relative Error and Significant Digits

In Example 2,

xe = .0040868, x1 = .0026363, x2 = .0040865.

Method 1.

0.5 × 10−1 ≤ Errrel =
|xe − x1|

|xe|
≈ 3.5 × 10−1 < 5.0 × 10−1.

Hence, x1 has approximately one significant digit correct (in this

example, x1 has zero correct digits).

Method 2.

0.5 × 10−4 ≤ Errrel =
|xe − x2|

|xe|
≈ 0.7 × 10−4 < 5.0 × 10−4.

Hence, x2 has approximately four significant digits correct (in this

example, x2 is indeed correct to four significant digits).
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Representation of Numbers in �

Let β ∈ � \ {0} be the base for a number system, e.g.,

β = 10 (decimal) , β = 2 (binary), β = 16 (hexadecimal).

Each x ∈ � can be represented by an infinite base β expansion in

the normalized form

.d0 d1 d2 . . . dt−1 dt . . . × βp

where p ∈ � , dk are digits in base β, i.e. dk ∈ {0, 1, . . . , β − 1}, and

d0 6= 0.

Example.

732.5051 =⇒ .7325051 × 103, −0.005612 =⇒ −0.5612 × 10−2.
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Floating Point Numbers

Recall. � is infinite in extent and density.

Floating point number systems limit

• the infinite density of � by representing only a finite number, t,

of digits in the expansion;

• the infinite extent of � by representing only a finite number of

integer values for the exponent p, i.e., L ≤ p ≤ U for specified

integers L > 0 and U > 0.

Therefore, each number in such a system is precisely of the form

.d0 d1 d2 . . . dt−1 × βp, L ≤ p ≤ U, d0 6= 0

or 0 (a very special floating point number).
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Two Standardized Systems

A floating point number system is denoted by F (β, t, L, U) or

simply by F when the parameters are understood.

Two standardized systems for digital computers widely used in the

design of software and hardware:

IEEE single precision: {β = 2; t = 24; L = −127; U = 128},

IEEE double precision: {β = 2; t = 53; L = −1023; U = 1024}.

Note. An exception occurs if the exponent is out of range, which

leads to a state called overflow if the exponent is too large, or

underflow if the exponent is too small.
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Truncation of a Real Number

Let

x = .d0 d1 . . . dn−1 dn . . . dt−1 × βp.

Using n digits:

• Rounding:

x =







.d0 d1 . . . dn−1 × βp if 0 ≤ dn ≤ 4,

.d0 d1 . . . (dn−1 + 1) × βp if 5 ≤ dn ≤ 9.

• Chopping:

x = .d0 d1 . . . dn−1 × βp.
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Relationship between x ∈ � and fl(x) ∈ F

For x ∈ � , let fl(x) ∈ F (β, t, L, U) be its floating point

approximation. Then
|x − fl(x)|

|x|
≤ E . (1)

E : machine epsilon, or unit roundoff error.

E =







1
2β1−t for rounding,

β1−t for chopping.

By (1), fl(x) − x = δ x, for some δ such that |δ| ≤ E . Hence,

fl(x) = x(1 + δ), −E ≤ δ ≤ E .

Example. Denote the addition operator in F by ⊕. For w, z ∈ F ,

w ⊕ z = fl(w + z) = (w + z)(1 + δ).
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Roundoff Error Analysis: an Exercise

How does (a ⊕ b) ⊕ c differ from the true sum a + b + c ?

(a ⊕ b) ⊕ c = (a + b)(1 + δ1) ⊕ c = ((a + b)(1 + δ1) + c)(1 + δ2)

= (a + b + c) + (a + b)δ1 + (a + b + c)δ2 + (a + b)δ1 δ2.

=⇒ |(a+ b+ c)− ((a⊕ b)⊕ c)| ≤ (|a|+ |b|+ |c|)(|δ1|+ |δ2|+ |δ1||δ2|).

If (a + b + c) 6= 0, then

Errrel =
|(a + b + c) − ((a ⊕ b) ⊕ c)|

|a + b + c|
≤

|a| + |b| + |c|

|a + b + c|
(2E + E2).

• If |a + b + c| ≈ |a| + |b| + |c| (e.g., a, b, c ∈ �

+, or a, b, c ∈ �

−,

then Errrel is bounded by 2E + E2 which is small;

• If |a + b + c| << |a| + |b| + |c|, then Errrel can be quite large.
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Roundoff Error Analysis: a Generalization

• Addition of N numbers. If
∑N

i=1 xi 6= 0, then

Errrel =
|
∑N

i=1 xi − fl(
∑N

i=1 xi)|

|
∑N

i=1 xi|
≤

∑N
i=1 |xi|

|
∑N

i=1 xi

1.01 N E .

(The appearance of the factor 1.01 is an artificial technicality.)

• Product of N numbers. If xi 6= 0, 1 ≤ i ≤ N , then

Errrel =
|
∏N

i=1 xi − fl(
∏N

i=1 xi)|

|
∏N

i=1 xi|
≤ 1.01 N E .
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Roundoff Error Analysis: an Example

In F (10, 5,−10, 10), let

a = 10000., b = 3.1416, c = −10000.

Then |a| + |b| + |c| = 20003.1416 and a + b + c = 3.1416. Hence,

0.5 × 100 ≤ Errrel ≤ 6367.2(2E + E2) ≈ 0.6 < 5.0 × 100.

This relative error implies that there may be no significant digits

correct in the result. Indeed,

(a ⊕ b) ⊕ c = 10003. ⊕ (−10000.) = 3.0000.

Therefore, the computed sum actually has one significant digit

correct.
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Conditioning

Consider a Problem P with input values I and output values O. If

a relative change of size ∆I in one or more input values causes a

relative change in the mathematically correct output values which

is guaranteed to be small (i.e., not too much larger than ∆I),

then P is said to be well-conditioned. Otherwise, P is said to be

ill-conditioned.

Remark. The above definition is independent of any particular

choice of algorithm and independent of any particular number

system. It is a statement about the mathematical problem.
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Condition Number

P : I = {x}, O = {f(x)}.

From Taylor series expansion:

f(x + ∆x) = f(x) + f
′

(x) ∆x +
1

2
f

′′

(x)∆x2 + O(∆x3)

≈ f(x) + f
′

(x) ∆x

assuming that |∆x| is small. Hence,

|f(x) − f(x + ∆x)|

|f(x)|
≈

|f
′

(x)||∆x|

|f(x)|
=

|x||f
′

(x)|

|f(x)|
︸ ︷︷ ︸

κ(P)

×
|∆x|

|x|
.

κ(P): the condition number of P.
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Condition Number: an Example

In Example 2, I = {x = −5.5}, O = {f(x) = ex}, and

κ(P) = |x| = 5.5. Hence, roundoff errors (in relative error) of size E

can lead to relative errors in the output bounded by

Errrel ≈ κ(P)E .

For example, if E ≈ 10−5, then

0.5 × 10−4 ≤ Errrel < 5.0 × 10−4,

and we should expect to have about four significant digits correct.
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Stability

Consider a Problem P with condition number κ(P), and suppose

that we apply Algorithm A to solve P. If we can guarantee that

the computed output values from A will have relative errors not

too much larger than the errors due to the condition number κ(P),

then A is said to be stable. Otherwise, if the computed output

values from A can have much larger relative errors, then A is said

to be unstable.

Example. For the Problem P in Example 2, P is well-conditioned.

Method 1 is unstable, while Method 2 is stable.
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A Stability Analysis

In Example 1, computing In =

∫ 1

0

xn

x + α
dx is reduced to solving

In =
1

n
− α In−1, I0 = ln

(
α + 1

α

)

.

We state without proof that this is a well-conditioned problem.

Suppose that the floating point representation of I0 introduces

some error ε0. For simplicity, assume that no other errors are

introduced at each stage of the computation after I0 is computed.

Let (In)A and (In)E be the approximate value and the exact value

of In, respectively. Then
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(In)E =
1

n
− α (In−1)E , (In)A =

1

n
− α (In−1)A.

Set εn = (In)A − (In)E . Then

εn = (−α) εn−1 = (−α)n ε0.

If |α| > 1, then any initial error ε0 is magnified by an unbounded

amount as n → ∞. On the other hand, if |α| < 1, then any initial

error is damped out. We conclude that the algorithm is stable if

|α| < 1, and unstable if |α| > 1.
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Taylor Series

The set of all functions that have n continuous derivatives on a

set X is denoted Cn(X), and the set of functions that have

derivatives of all orders on X is denoted C∞(X), where X consists

of all numbers for which the functions are defined.

Taylor’s theorem provides the most important tool for this course.
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Taylor’s Theorem

Suppose f ∈ Cn[a, b], that f (n+1) exists on [a, b], and x0 ∈ [a, b].

For every x ∈ [a, b], there exists a number ξ(x) between x0 and x

with

f(x) = Pn(x)
︸ ︷︷ ︸

nth Taylor polynomial

+ Rn(x)
︸ ︷︷ ︸

remainder term (or truncation error)

,

Pn(x) =
n∑

k=0

f (k)(x0)

k !
(x − x0)

k

= f(x0) + f ′(x0)(x − x0) + · · · +
f (n)(x0)

n !
(x − x0)

n,

Rn(x) =
f (n+1)(ξ(x))

(n + 1) !
(x − x0)

n+1.
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Taylor Series: an Example

• Find the third degree Taylor polynomial P3(x) for f(x) = sinx at

the expansion point x0 = 0.

Note that f ∈ C∞( � ). Hence, Taylor’s theorem is applicable.

P3(x) = f(0) + f ′(0)x +
f ′′(0)

2
x2 +

f ′′′(0)

3!
x3.

f ′(x) = cosx =⇒ f ′(0) = cos 0 = 1,

f ′′(x) = − sinx =⇒ f ′′(0) = − sin 0 = 0,

f ′′′(x) = − cosx =⇒ f ′′′0) = − cos 0 = −1.

Also, f(0) = sin 0 = 0. Hence, P3(x) = x −
x3

6
.
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• What about the truncation error ?

R3(x) =
f ′′′′(ξ)

4!
x4 =

sin ξ

24
x4 where ξ ∈ (0, x).

• How big could the error be at x = π/2 ?

R3

(π

2

)

=
sin ξ

24

(π

2

)4

where ξ ∈
(

0,
π

2

)

.

Since | sin ξ| ≤ 1 for all ξ ∈
(
0, π

2

)
,

∣
∣
∣R3

(π

2

)∣
∣
∣ ≤

1

24

(π

2

)4

≈ 2.025.

• Actual error ?

∣
∣
∣f

(π

2

)

− P3

(π

2

)∣
∣
∣ =

∣
∣
∣
∣
sin

π

2
−

(
π

2
−

(π/2)3

6

)∣
∣
∣
∣
≈ 0.075.

In this example, the error bound is much larger than the actual

error.
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Rate of Convergence

Throughout this course, we will study numerical methods which

solve a problem by constructing a sequence of (hopefully) better

and better approximations which converge to the required solution.

A technique is required to compare the convergence rates of

different methods.

Definition. Suppose {βn}
∞
n=1 is a sequence known to converge to

zero, and {αn}
∞
n=1 converges to a number α. If a positive constant

K exists with

|αn − α| ≤ K|βn| for large n,

then we say that {αn}
∞
n=1 converges to α with rate of convergence

O(βn). It is indicated by writing αn = α + O(βn).
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In nearly every situation, we use

βn =
1

np
for some number p > 0.

Usually we compare how fast {αn}
∞
n=1 → α with how fast

βn = 1/np → 0.

Example. {αn}
∞
n=1 → α like 1/n or 1/n2.

1

n2
→ 0 faster than

1

n
,

1

n3
→ 0 faster than

1

n2
.

We are most interested in the largest value of p with

αn = α + O(1/np).
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To find the rate of convergence, we can use the definition: find the

largest p such that

|αn − α| ≤ K |βn| = K
1

np
for n large,

or equivalently, find the largest p so that

lim
n→∞

|αn − α|

|βn|
= lim

n→∞

|αn − α|

1/np
= K.

Note. K must be a constant, and cannot be “∞”.
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Rate of Convergence: an Example

For αn = (n + 1)/n2, α̂n = (n + 3)/n3,

limn→∞ αn = limn→∞ α̂n = 0 = α.

lim
n→∞

|αn − α|

1/np
= lim

n→∞

n + 1

n2
np =







1 if p = 1,

∞ if p ≥ 2;

lim
n→∞

|α̂n − α|

1/np
= lim

n→∞

n + 3

n3
np =







0 if p = 1,

1 if p = 2,

∞ if p ≥ 3.

Hence, αn = 0 + O(1/n), and α̂n = 0 + O(1/n2).
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Rate of Convergence: another Example

For αn = sin(1/n), we have limn→∞ αn = 0. For all n ∈ � \ {0},

sin(1/n) > 0. Hence, to find the rate of convergence of αn, we need

to find the largest p so that

lim
n→∞

|αn − α|

|βn|
= lim

n→∞

|sin(1/n) − 0|

1/np
= lim

n→∞

sin(1/n)

1/np
= K.

Use change of variable h = 1/n: lim
n→∞

sin(1/n)

1/np
≡ lim

h→0

sinh

hp
.

Apply Taylor series expansion to sinh at h = 0:

lim
h→0

sinh

hp
= lim

h→0

h − h3/6 + · · ·

hp
=







1 if p = 1,

∞ if p ∈ � \ {0, 1}.

Hence, the rate of convergence is O(h) or O(1/n).
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Rate of Convergence for Functions

Suppose that limh→0 G(h) = 0 and limh→0 F (h) = L. If a positive

constant K exists with

|F (h) − L| ≤ K |G(h)|, for sufficiently small h,

then we write F (h) = L + O(G(h)).

In general, G(h) = hp, where p > 0, and we are interested in finding

the largest value of p for which F (h) = L + O(hp).
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Rate of Convergence for Functions: an Example

Let F (h) = cosh +
1

2
h2. Then L = lim

h→0
F (h) = 1. We have

lim
h→0

|F (h) − L|

hp
= lim

h→0

cosh + 1/2h2 − 1

hp

= lim
h→0

(
1−1/2h2+1/24h4− · · ·

)
+1/2h2−1

hp

= lim
h→0

1/24h4− · · ·

hp

=







1/24 if p = 4,

∞ if p > 4.

Hence, F (h) = 1 + O(h4).
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