Floating Point Number Systems

Simon Fraser University – Surrey Campus MACM 316 – Spring 2005 Instructor: Ha Le

Overview

- Real number system
- Examples
- Absolute and relative errors
- Floating point numbers
- Roundoff error analysis
- Conditioning and stability
- A stability analysis
- Rate of convergence

Real number system

- The arithmetic of the mathematically defined real number system, denoted by \mathbb{R} , is used.
- \mathbb{R} is infinite in
 - (1) *extent*, i.e., there are numbers $x \in \mathbb{R}$ such that |x| is arbitrarily large.
 - (2) *density*, i.e., any interval $I = \{x \mid a \le x \le b\}$ of \mathbb{R} is an infinite set.
- Computer systems can only represent finite sets of numbers, so all the actual implementations of algorithms must use *approximations* to R and *inexact arithmetic*.

Example 1: Evaluate
$$I_n = \int_0^1 \frac{x^n}{x+\alpha} dx$$

$$\begin{cases}
I_0 = \int_0^1 \frac{1}{(x+\alpha)} dx = \ln\left(\frac{\alpha+1}{\alpha}\right) \\
I_n + \alpha I_{n-1} = \int_0^1 \frac{x^n + \alpha x^{n-1}}{x+\alpha} dx = \frac{1}{n} \\
\implies I_n = \frac{1}{n} - \alpha I_{n-1}, \quad I_0 = \ln\left(\frac{\alpha+1}{\alpha}\right)
\end{cases}$$
Using single precision floating point arithmetic:
 $\alpha = .5 \Rightarrow I_{100} = 6.64 \times 10^{-3}, \quad \alpha = 2.0 \Rightarrow I_{100} = 2.1 \times 10^{22}.$
Note. If $\alpha > 1$, $(x+\alpha) > 1$ for $0 \le x \le 1$. Hence,
 $\int_0^1 \frac{x^n}{x+\alpha} dx \le \int_0^1 x^n dx = \frac{1}{n+1}.$

Example 2: Evaluate $e^{-5.5}$

Recall.
$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!} = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \cdots$$

Using a calculator which carries five *significant figures*.

Method 1.

$$x_1 = e^{-5.5} = \sum_{n=0}^{20} \frac{(-5.5)^n}{n!} = .0026363$$

Method 2.

$$x_2 = e^{-5.5} = \frac{1}{e^{5.5}} = \frac{1}{\sum_{n=0}^{20} \frac{(5.5)^n}{n!}} = .0040865$$

Note. The correct answer, up to five significant digits, is

$$x_e = e^{-5.5} = .0040868$$

Absolute and Relative Error

Computed result: x, correct mathematical result: x_e .

$$Err_{abs} = |x_e - x|, \quad Err_{rel} = \frac{|x_e - x|}{|x_e|}$$

Definition. The *significant digits* in a number are the digits starting with the first, i.e., leftmost, nonzero digit (e.g., .0040868).

• x is said to approximate x_e to about s significant digits if the relative error satisfies

$$0.5 \times 10^{-s} \le \frac{|x_e - x|}{|x_e|} < 5.0 \times 10^{-s}.$$

Example 3: Relative Error and Significant Digits

In Example 2,

 $x_e = .0040868, \quad x_1 = .0026363, \quad x_2 = .0040865.$

Method 1.

$$0.5 \times 10^{-1} \le Err_{rel} = \frac{|x_e - x_1|}{|x_e|} \approx 3.5 \times 10^{-1} < 5.0 \times 10^{-1}.$$

Hence, x_1 has approximately one significant digit correct (in this example, x_1 has zero correct digits).

Method 2.

$$0.5 \times 10^{-4} \le Err_{rel} = \frac{|x_e - x_2|}{|x_e|} \approx 0.7 \times 10^{-4} < 5.0 \times 10^{-4}.$$

Hence, x_2 has approximately four significant digits correct (in this example, x_2 is indeed correct to four significant digits).

Representation of Numbers in \mathbb{R}

Let $\beta \in \mathbb{N} \setminus \{0\}$ be the base for a number system, e.g.,

 $\beta = 10$ (decimal), $\beta = 2$ (binary), $\beta = 16$ (hexadecimal).

Each $x \in \mathbb{R}$ can be represented by an *infinite* base β expansion in the *normalized* form

 $.d_0 d_1 d_2 \ldots d_{t-1} d_t \ldots \times \beta^p$

where $p \in \mathbb{Z}$, d_k are digits in base β , i.e. $d_k \in \{0, 1, \dots, \beta - 1\}$, and $d_0 \neq 0$.

Example.

 $732.5051 \implies .7325051 \times 10^3, \quad -0.005612 \implies -0.5612 \times 10^{-2}.$

Floating Point Numbers

Recall. \mathbb{R} is infinite in extent and density.

Floating point number systems limit

- the *infinite density* of \mathbb{R} by representing only a *finite* number, t, of digits in the expansion;
- the *infinite extent* of ℝ by representing only a finite number of integer values for the exponent p, i.e., L ≤ p ≤ U for specified integers L > 0 and U > 0.

Therefore, each number in such a system is precisely of the form

 $.d_0 d_1 d_2 \dots d_{t-1} \times \beta^p, \ L \le p \le U, \ d_0 \ne 0$

or 0 (a very special floating point number).

Two Standardized Systems

A floating point number system is denoted by $F(\beta, t, L, U)$ or simply by F when the parameters are understood.

Two standardized systems for digital computers widely used in the design of software and hardware:

IEEE single precision: $\{\beta = 2; t = 24; L = -127; U = 128\},\$

IEEE double precision: $\{\beta = 2; t = 53; L = -1023; U = 1024\}.$

Note. An *exception* occurs if the exponent is out of range, which leads to a state called *overflow* if the exponent is too large, or *underflow* if the exponent is too small.

Truncation of a Real Number

Let

$$x = .d_0 d_1 \dots d_{n-1} d_n \dots d_{t-1} \times \beta^p.$$

Using n digits:

• Rounding:

$$x = \begin{cases} .d_0 d_1 \dots d_{n-1} \times \beta^p & \text{if } 0 \le d_n \le 4, \\ .d_0 d_1 \dots (d_{n-1}+1) \times \beta^p & \text{if } 5 \le d_n \le 9. \end{cases}$$

• Chopping:

$$x = .d_0 d_1 \dots d_{n-1} \times \beta^p.$$

Relationship between $x \in \mathbb{R}$ and $fl(x) \in F$

For $x \in \mathbb{R}$, let $fl(x) \in F(\beta, t, L, U)$ be its floating point approximation. Then

$$\frac{|x - \mathrm{fl}(x)|}{|x|} \le \mathcal{E}.$$
(1)

 \mathcal{E} : machine epsilon, or unit roundoff error.

$$\mathcal{E} = \begin{cases} \frac{1}{2}\beta^{1-t} & \text{for rounding,} \\ \beta^{1-t} & \text{for chopping.} \end{cases}$$

By (1), $fl(x) - x = \delta x$, for some δ such that $|\delta| \leq \mathcal{E}$. Hence, $fl(x) = x(1+\delta), -\mathcal{E} \leq \delta \leq \mathcal{E}$.

Example. Denote the addition operator in F by \oplus . For $w, z \in F$, $w \oplus z = \operatorname{fl}(w + z) = (w + z)(1 + \delta).$ Roundoff Error Analysis: an Exercise

How does $(a \oplus b) \oplus c$ differ from the true sum a + b + c?

$$(a \oplus b) \oplus c = (a+b)(1+\delta_1) \oplus c = ((a+b)(1+\delta_1)+c)(1+\delta_2)$$

= $(a+b+c) + (a+b)\delta_1 + (a+b+c)\delta_2 + (a+b)\delta_1\delta_2.$

 $\implies |(a+b+c) - ((a \oplus b) \oplus c)| \le (|a|+|b|+|c|)(|\delta_1|+|\delta_2|+|\delta_1||\delta_2|).$ If $(a+b+c) \ne 0$, then

$$Err_{rel} = \frac{|(a+b+c) - ((a \oplus b) \oplus c)|}{|a+b+c|} \le \frac{|a|+|b|+|c|}{|a+b+c|} (2\mathcal{E} + \mathcal{E}^2).$$

• If $|a + b + c| \approx |a| + |b| + |c|$ (e.g., $a, b, c \in \mathbb{R}^+$, or $a, b, c \in \mathbb{R}^-$, then Err_{rel} is bounded by $2\mathcal{E} + \mathcal{E}^2$ which is small;

• If $|a + b + c| \ll |a| + |b| + |c|$, then Err_{rel} can be quite large.

Roundoff Error Analysis: a Generalization

• Addition of N numbers. If $\sum_{i=1}^{N} x_i \neq 0$, then

$$Err_{rel} = \frac{\left|\sum_{i=1}^{N} x_i - \mathrm{fl}(\sum_{i=1}^{N} x_i)\right|}{\left|\sum_{i=1}^{N} x_i\right|} \le \frac{\sum_{i=1}^{N} |x_i|}{\left|\sum_{i=1}^{N} x_i\right|} 1.01 \, N \, \mathcal{E}.$$

(The appearance of the factor 1.01 is an artificial technicality.)

• Product of N numbers. If $x_i \neq 0, 1 \leq i \leq N$, then

$$Err_{rel} = \frac{\left|\prod_{i=1}^{N} x_i - \mathrm{fl}(\prod_{i=1}^{N} x_i)\right|}{\left|\prod_{i=1}^{N} x_i\right|} \le 1.01 \, N \, \mathcal{E}.$$

Roundoff Error Analysis: an Example

In F(10, 5, -10, 10), let

a = 10000., b = 3.1416, c = -10000.

Then |a| + |b| + |c| = 20003.1416 and a + b + c = 3.1416. Hence,

$$0.5 \times 10^0 \le Err_{rel} \le 6367.2(2\mathcal{E} + \mathcal{E}^2) \approx 0.6 < 5.0 \times 10^0.$$

This relative error implies that there may be no significant digits correct in the result. Indeed,

$$(a \oplus b) \oplus c = 10003. \oplus (-10000.) = 3.0000.$$

Therefore, the computed sum actually has one significant digit correct.

Conditioning

Consider a Problem \mathcal{P} with input values \mathcal{I} and output values \mathcal{O} . If a relative change of size $\Delta \mathcal{I}$ in one or more input values causes a relative change in the mathematically correct output values which is guaranteed to be small (i.e., not too much larger than $\Delta \mathcal{I}$), then \mathcal{P} is said to be *well-conditioned*. Otherwise, \mathcal{P} is said to be *ill-conditioned*.

Remark. The above definition is *independent* of any particular choice of algorithm and *independent* of any particular number system. It is a statement about the mathematical problem.

Condition Number

$$\mathcal{P}: \ \mathcal{I} = \{x\}, \ \mathcal{O} = \{f(x)\}.$$

From Taylor series expansion:

$$f(x + \Delta x) = f(x) + f'(x) \Delta x + \frac{1}{2} f''(x) \Delta x^{2} + O(\Delta x^{3})$$

$$\approx f(x) + f'(x) \Delta x$$

assuming that $|\Delta x|$ is small. Hence,

$$\frac{|f(x) - f(x + \Delta x)|}{|f(x)|} \approx \frac{|f'(x)| |\Delta x|}{|f(x)|} = \underbrace{\frac{|x| |f'(x)|}{|f(x)|}}_{\kappa(\mathcal{P})} \times \frac{|\Delta x|}{|x|}$$

 $\kappa(\mathcal{P})$: the condition number of \mathcal{P} .

Condition Number: an Example

In Example 2, $\mathcal{I} = \{x = -5.5\}, \mathcal{O} = \{f(x) = e^x\}$, and $\kappa(\mathcal{P}) = |x| = 5.5$. Hence, roundoff errors (in relative error) of size \mathcal{E} can lead to relative errors in the output bounded by

$$\operatorname{Err}_{rel} \approx \kappa(\mathcal{P})\mathcal{E}.$$

For example, if $\mathcal{E} \approx 10^{-5}$, then

$$0.5 \times 10^{-4} \le \operatorname{Err}_{rel} < 5.0 \times 10^{-4},$$

and we should expect to have about four significant digits correct.

Stability

Consider a Problem \mathcal{P} with condition number $\kappa(\mathcal{P})$, and suppose that we apply Algorithm \mathcal{A} to solve \mathcal{P} . If we can guarantee that the computed output values from \mathcal{A} will have relative errors not too much larger than the errors due to the condition number $\kappa(\mathcal{P})$, then \mathcal{A} is said to be *stable*. Otherwise, if the computed output values from \mathcal{A} can have much larger relative errors, then \mathcal{A} is said to be *unstable*.

Example. For the Problem \mathcal{P} in Example 2, \mathcal{P} is well-conditioned. Method 1 is unstable, while Method 2 is stable.

A Stability Analysis

In Example 1, computing $I_n = \int_0^1 \frac{x^n}{x+\alpha} dx$ is reduced to solving

$$I_n = \frac{1}{n} - \alpha I_{n-1}, \quad I_0 = \ln\left(\frac{\alpha+1}{\alpha}\right).$$

We state *without proof* that this is a well-conditioned problem.

Suppose that the floating point representation of I_0 introduces some error ϵ_0 . For simplicity, assume that no other errors are introduced at each stage of the computation after I_0 is computed. Let $(I_n)_A$ and $(I_n)_E$ be the approximate value and the exact value of I_n , respectively. Then

$$(I_n)_E = \frac{1}{n} - \alpha (I_{n-1})_E, \quad (I_n)_A = \frac{1}{n} - \alpha (I_{n-1})_A.$$

Set $\epsilon_n = (I_n)_A - (I_n)_E.$ Then

$$\epsilon_n = (-\alpha) \,\epsilon_{n-1} = (-\alpha)^n \,\epsilon_0.$$

If $|\alpha| > 1$, then any initial error ϵ_0 is magnified by an unbounded amount as $n \to \infty$. On the other hand, if $|\alpha| < 1$, then any initial error is damped out. We conclude that the algorithm is stable if $|\alpha| < 1$, and unstable if $|\alpha| > 1$.

Taylor Series

The set of all functions that have n continuous derivatives on a set X is denoted $C^n(X)$, and the set of functions that have derivatives of all orders on X is denoted $C^{\infty}(X)$, where X consists of all numbers for which the functions are defined.

Taylor's theorem provides the most important tool for this course.

Taylor's Theorem

Suppose $f \in C^n[a, b]$, that $f^{(n+1)}$ exists on [a, b], and $x_0 \in [a, b]$. For every $x \in [a, b]$, there exists a number $\xi(x)$ between x_0 and x with

$$f(x) = \underbrace{P_n(x)}_{n \text{th Taylor polynomial}} + \underbrace{R_n(x)}_{n \text{th Taylor polynomial}},$$

$$remainder term (or truncation error)$$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}.$$

Taylor Series: an Example

• Find the third degree Taylor polynomial $P_3(x)$ for $f(x) = \sin x$ at the expansion point $x_0 = 0$.

Note that $f \in C^{\infty}(\mathbb{R})$. Hence, Taylor's theorem is applicable.

$$P_{3}(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^{2} + \frac{f'''(0)}{3!}x^{3}.$$

$$f'(x) = \cos x \implies f'(0) = \cos 0 = 1,$$

$$f''(x) = -\sin x \implies f''(0) = -\sin 0 = 0,$$

$$f'''(x) = -\cos x \implies f'''(0) = -\cos 0 = -1.$$
Also, $f(0) = \sin 0 = 0.$ Hence, $P_{3}(x) = x - \frac{x^{3}}{6}.$

• What about the truncation error ?

$$R_3(x) = \frac{f''''(\xi)}{4!} x^4 = \frac{\sin \xi}{24} x^4 \text{ where } \xi \in (0, x).$$

• How big could the error be at $x = \pi/2$?

$$R_3\left(\frac{\pi}{2}\right) = \frac{\sin\xi}{24} \left(\frac{\pi}{2}\right)^4 \text{ where } \xi \in \left(0, \frac{\pi}{2}\right).$$

Since $|\sin \xi| \le 1$ for all $\xi \in (0, \frac{\pi}{2})$,

$$\left|R_3\left(\frac{\pi}{2}\right)\right| \le \frac{1}{24}\left(\frac{\pi}{2}\right)^4 \approx 2.025.$$

• Actual error ?

$$\left| f\left(\frac{\pi}{2}\right) - P_3\left(\frac{\pi}{2}\right) \right| = \left| \sin\frac{\pi}{2} - \left(\frac{\pi}{2} - \frac{(\pi/2)^3}{6}\right) \right| \approx 0.075.$$

In this example, the error bound is much larger than the actual error.

Rate of Convergence

Throughout this course, we will study numerical methods which solve a problem by constructing a sequence of (hopefully) better and better approximations which converge to the required solution. A technique is required to compare the convergence rates of different methods.

Definition. Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

 $|\alpha_n - \alpha| \le K |\beta_n|$ for large n,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with rate of convergence $O(\beta_n)$. It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.

In nearly every situation, we use

$$\beta_n = \frac{1}{n^p}$$
 for some number $p > 0$.

Usually we compare how fast $\{\alpha_n\}_{n=1}^{\infty} \to \alpha$ with how fast $\beta_n = 1/n^p \to 0$.

Example. $\{\alpha_n\}_{n=1}^{\infty} \to \alpha$ like 1/n or $1/n^2$.

$$\frac{1}{n^2} \to 0$$
 faster than $\frac{1}{n}$,
 $\frac{1}{n^3} \to 0$ faster than $\frac{1}{n^2}$.

We are most interested in the largest value of p with $\alpha_n = \alpha + O(1/n^p).$ To find the rate of convergence, we can use the definition: find the largest p such that

$$|\alpha_n - \alpha| \le K |\beta_n| = K \frac{1}{n^p}$$
 for n large,

or equivalently, find the largest p so that

$$\lim_{n \to \infty} \frac{|\alpha_n - \alpha|}{|\beta_n|} = \lim_{n \to \infty} \frac{|\alpha_n - \alpha|}{1/n^p} = K.$$

Note. K must be a constant, and cannot be " ∞ ".

Rate of Convergence: an Example

For
$$\alpha_n = (n+1)/n^2$$
, $\hat{\alpha}_n = (n+3)/n^3$,
 $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \hat{\alpha}_n = 0 = \alpha$.

$$\lim_{n \to \infty} \frac{|\alpha_n - \alpha|}{1/n^p} = \lim_{n \to \infty} \frac{n+1}{n^2} n^p = \begin{cases} 1 & \text{if } p = 1, \\ \infty & \text{if } p \ge 2; \end{cases}$$

$$\lim_{n \to \infty} \frac{|\hat{\alpha}_n - \alpha|}{1/n^p} = \lim_{n \to \infty} \frac{n+3}{n^3} n^p = \begin{cases} 0 & \text{if } p = 1, \\ 1 & \text{if } p = 2, \\ \infty & \text{if } p \ge 3. \end{cases}$$

Hence, $\alpha_n = 0 + O(1/n)$, and $\hat{\alpha}_n = 0 + O(1/n^2)$.

Rate of Convergence: another Example

For $\alpha_n = \sin(1/n)$, we have $\lim_{n\to\infty} \alpha_n = 0$. For all $n \in \mathbb{N} \setminus \{0\}$, $\sin(1/n) > 0$. Hence, to find the rate of convergence of α_n , we need to find the largest p so that

$$\lim_{n \to \infty} \frac{|\alpha_n - \alpha|}{|\beta_n|} = \lim_{n \to \infty} \frac{|\sin(1/n) - 0|}{1/n^p} = \lim_{n \to \infty} \frac{\sin(1/n)}{1/n^p} = K.$$

Use change of variable h = 1/n: $\lim_{n \to \infty} \frac{\sin(1/n)}{1/n^p} \equiv \lim_{h \to 0} \frac{\sin h}{h^p}$.

Apply Taylor series expansion to $\sin h$ at h = 0:

$$\lim_{h \to 0} \frac{\sin h}{h^p} = \lim_{h \to 0} \frac{h - h^3/6 + \dots}{h^p} = \begin{cases} 1 & \text{if } p = 1, \\ \infty & \text{if } p \in \mathbb{N} \setminus \{0, 1\}. \end{cases}$$

Hence, the rate of convergence is O(h) or O(1/n).

Rate of Convergence for Functions

Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If a positive constant K exists with

 $|F(h) - L| \le K |G(h)|$, for sufficiently small h,

then we write F(h) = L + O(G(h)).

In general, $G(h) = h^p$, where p > 0, and we are interested in finding the largest value of p for which $F(h) = L + O(h^p)$.

Rate of Convergence for Functions: an Example

Let
$$F(h) = \cos h + \frac{1}{2}h^2$$
. Then $L = \lim_{h \to 0} F(h) = 1$. We have

$$\lim_{h \to 0} \frac{|F(h) - L|}{h^p} = \lim_{h \to 0} \frac{\cos h + 1/2h^2 - 1}{h^p}$$

$$= \lim_{h \to 0} \frac{(1 - 1/2h^2 + 1/24h^4 - \cdots) + 1/2h^2 - 1}{h^p}$$

$$= \lim_{h \to 0} \frac{1/24h^4 - \cdots}{h^p}$$

$$= \begin{cases} 1/24 & \text{if } p = 4, \\ \infty & \text{if } p > 4. \end{cases}$$

Hence, $F(h) = 1 + O(h^4)$.