Interpolation (Part II)

Simon Fraser University – Surrey Campus MACM 316 – Spring 2005 Instructor: Ha Le

Piecewise Polynomial Interpolation

• Interpolation of data of the form (x_i, y_i) , i = 0, ..., n, for (much) larger n than that for polynomial interpolation.

• The x values are required to be *ordered*, i.e., $x_i < x_{i+1}$. They define a *partition* of n subintervals of the total interval $x_0 < x < x_n$.

• Use of a different (low degree) polynomial for each subinterval. These polynomials are patched together to give a piecewise polynomial approximation.

• x_k : a node, a breakpoint, or a knot of the piecewise polynomial.

Cubic Spine Interpolants

Given a function f defined on [a, b], and a set of n + 1 nodes $a = x_0 < x_1 < \cdots < x_n = b$, a *cubic spline interpolant* S for f is a function that satisfies the following conditions:

- a. S(x) is a cubic polynomial, denoted $S_j(x)$, on the subinterval $[x_j, x_{j+1}]$ for each $0 \le j \le n-1$;
- b. S(x) is an interpolant, i.e., $S(x_j) = f(x_j)$ for each $0 \le j \le n$;
- c. S(x) is continuous, i.e., $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ for each $0 \le j \le n-2;$

- d. S(x) is continuously differentiable, i.e., $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$ for each $0 \le j \le n-2$;
- e. S(x) is twice continuously differentiable, i.e., $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$ for each $0 \le j \le n-2$;
- f. One of the following sets of boundary conditions is satisfied: (i) $S''(x_0) = S''(x_n) = 0$ (free or natural boundary); (ii) $S'(x_0) = f'(x_0) = f'(x_0) = f'(x_0)$ (closered based on the set of the set
 - (ii) $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (clamped boundary).

Boundary Conditions: a Justification

Consider the cubic polynomial $S_j(x)$ defined on $[x_j, x_{j+1}]$:

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

- *n* intervals and 4 unknowns $(a_j, b_j, c_j \text{ and } d_j)$ to determine a cubic polynomial on each subinterval $\implies 4n$ unknowns.
- $S_j(x_j) = f(x_j), S_j(x_{j+1}) = f(x_{j+1}), 0 \le j \le n-1 \Longrightarrow 2n$ eqns.
- $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$ and $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1}), 0 \le j \le n-2$ $\implies 2(n-1)$ eqns. Hence, 4n-2 eqns in total.
- Need 2 more equations \implies boundary conditions.

Cubic Spline Interpolants: a Construction

$$S_j(x) = a_j + b_j (x - x_j) + c_j (x - x_j)^2 + d_j (x - x_j)^3, \ 0 \le j \le n - 1.$$
(1)
Define $h_j = x_{j+1} - x_j, \ 0 \le j \le n - 1.$ By (1),

$$S_j(x_j) = a_j = f(x_j), \ 0 \le j \le n-1.$$
 (2)

• Define $a_n = f(x_n)$. By condition (c), $a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$, $0 \le j \le n - 1$. (3) • $S'_j(x) = b_j + 2c_j(x - x_j) + 3d_j(x - x_j)^2$. Define $b_n = S'(x_n)$. By condition (d), $b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$, $0 \le j \le n - 1$. (4)

• $S_j''(x) = 2c_j + 6d_j(x - x_j)$. Define $c_n = S''(x_n)/2$. By

condition (e),

$$c_{j+1} = c_j + 3d_jh_j, \ 0 \le j \le n-1.$$
 (5)

By (5), (3), (4), for each $0 \le j \le n - 1$,

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}), \tag{6}$$

$$b_{j+1} = b_j + h_j(c_j + c_{j+1}).$$
 (7)

By (6),

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}).$$
(8)

By (7) and (8), for $1 \le j \le n - 1$,

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}).$$
(9)

Example. With
$$n = 5$$
, by (9),
 $h_0c_0 + 2(h_0 + h_1)c_1 + h_1c_2 = \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0),$
 $h_1c_1 + 2(h_1 + h_2)c_2 + h_2c_3 = \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1),$
 $h_2c_2 + 2(h_2 + h_3)c_3 + h_3c_4 = \frac{3}{h_3}(a_4 - a_3) - \frac{3}{h_2}(a_3 - a_2),$
 $h_3c_3 + 2(h_3 + h_4)c_4 + h_4c_5 = \frac{3}{h_4}(a_5 - a_4) - \frac{3}{h_3}(a_4 - a_3).$
(10)

Remark. (10) is a linear system of 4 equations in 6 unknowns c_i , $0 \le i \le 5$.

Strictly Diagonally Dominant Matrix

Definition. An $n \times n$ matrix A is strictly diagonally dominant if

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

holds for each $i = 1, 2, \ldots, n$.

Theorem. A strictly diagonally dominant matrix is invertible.

Natural Boundary Conditions

Recall.

$$S''(x_0) = S''(x_n) = 0.$$
(11)

By (11),

$$S_{0}''(x) = 2c_{0} + 6d_{0}(x - x_{0}) \implies c_{0} = \frac{1}{2} \underbrace{S_{0}''(x_{0})}_{0} = 0. \quad (12)$$
$$c_{n} = \frac{1}{2} \underbrace{S_{0}''(x_{n})}_{0} = 0 \qquad (13)$$

The combination of (9), (12) and (13) results in a linear system of equations Ax = b to be solved for $x = [c_0, c_1, \ldots, c_n]^t$.

Example. With
$$n = 5$$
,

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & 0 & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ 0 & 0 & 0 & h_3 & 2(h_3 + h_4) & h_4 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$x = \begin{bmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}^t,$$

$$b = \begin{bmatrix} 0, & 3\frac{a_2 - a_1}{h_1} - 3\frac{a_1 - a_0}{h_0}, & 3\frac{a_3 - a_2}{h_2} - 3\frac{a_2 - a_1}{h_1}, \\ & 3\frac{a_4 - a_3}{h_3} - 3\frac{a_3 - a_2}{h_2}, & 3\frac{a_5 - a_4}{h_4} - 3\frac{a_4 - a_3}{h_3}, & 0 \end{bmatrix}^t.$$

• The matrix A in the linear system Ax = b is strictly diagonally dominant. Hence, A is invertible, and a unique solution $x = [c_0, c_1, \ldots, c_n]^t$ exists.

• The matrix A is tridiagonal: all the entries are zero except for a band which is three-entry wide centered on the main diagonal. Solutions to tridiagonal linear systems can be found very efficiently: only O(n) operations are needed using methods we shall discuss later.

A Note on Clamped Boundary Conditions

With the clamped boundary conditions: $S'(x_0) = f'(x_0)$, $S'(x_n) = f'(x_n)$, one can derive the following two equations:

$$2h_0c_0 + h_0c_1 = \frac{3}{h_0}(a_1 - a_0) - 3f'(x_0), \qquad (14)$$

$$h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3f'(x_n) - \frac{3}{h_{n-1}}(a_n - a_{n-1}).$$
(15)

With the combination of (9), (14) and (15), as in the case of natural boundary conditions, the problem of computing the coefficients $x = [c_0, c_1, \ldots, c_n]^t$ is reduced to solving a linear system of equations Ax = b. The matrix A is strictly diagonally dominant, and also tridiagonal. Hence, a unique solution exists, and can be efficiently computed.

Example. With
$$n = 5$$
,

$$A = \begin{bmatrix} 2h_0 & h_0 & 0 & 0 & 0 & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & 0 & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ 0 & 0 & 0 & h_3 & 2(h_3 + h_4) & h_4 \\ 0 & 0 & 0 & 0 & h_4 & 2h_4 \end{bmatrix},$$

$$x = \begin{bmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}^t,$$

$$b = \begin{bmatrix} 3\frac{a_1 - a_0}{h_0} - 3f'(x_0), \ 3\frac{a_2 - a_1}{h_1} - 3\frac{a_1 - a_0}{h_0}, \ 3\frac{a_3 - a_2}{h_2} - 3\frac{a_2 - a_1}{h_1}, \\ 3\frac{a_4 - a_3}{h_3} - 3\frac{a_3 - a_2}{h_2}, \ 3\frac{a_5 - a_4}{h_4} - 3\frac{a_4 - a_3}{h_3}, \ 3f'(x_5) - 3\frac{a_5 - a_4}{h_4} \end{bmatrix}^t.$$

Cubic Spline Interpolants: Error-Bound Formula

Let $f \in C^4[a, b]$ with $\max_{a \le x \le b} |f^{(4)}(x)| = M$. If S is the unique clamped cubic spline interpolant to f with respect to the nodes $a = x_0 < x_1 < \cdots < x_n = b$, then

$$\max_{a \le x \le b} |f(x) - S(x)| \le \frac{5M}{384} \max_{0 \le j \le n-1} (x_{j+1} - x_j)^4.$$

Remark. A fourth-order error bound also exists for the case of natural boundary conditions.

Parametric Curves

The interpolating polynomials and splines can only be used to interpolate *functions*.

Given $S = \{(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)\}$ with

 $x_0 < x_1 < \dots < x_n:$

• define a parameter t on the interval $[t_0, t_n]$ with

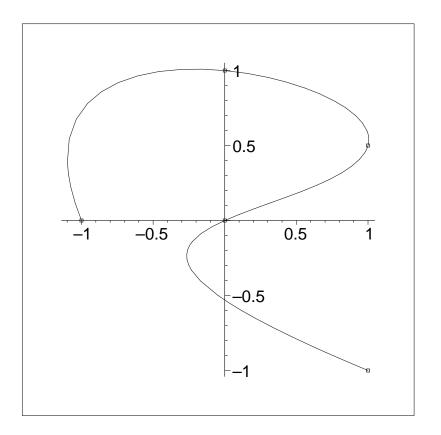
 $t_0 < t_1 < \cdots < t_n;$

• construct interpolating functions x(t) and y(t) separately:

$$x(t_i) = x_i, \quad y(t_i) = y_i \quad \text{for } 0 \le i \le n$$

using interpolating polynomials or splines.

	Par	ame	etric	Cur	ves:	an E	xam	ple
		i	0	1	2	3	4	
		t_i	0	0.25	0.5	0.75	1	
		x_i	-1	0	1	0	1	
		y_i	0	1	0.5	0	-1	
• Using 1	Jagrang	e inte	erpola	ating p	olynoi	mials fo	or $x(t$	(t) and $y(t)$:
x(t) =	$-\frac{32}{3} (t-1/4) (t-1/2) (t-3/4) (t-1) + 64 t (t-1/4) \times $							
$(t-3/4)(t-1) + \frac{32}{3}t(t-1/4)(t-1/2)(t-3/4),$								
y(t) =	$-\frac{128}{3}t(t-1/2)(t-3/4)(t-1) + 32t(t-1/4) \times$							
	(t - 3/	(4)(t)	- 1)	$-\frac{32}{3}t$	(t - 1)	/4)(t -	- 1/2)	(t-3/4) .



Remark. Moving a single data point effects the entire curve. It is desirable, e.g., in computer graphics, that changing one portion of a curve should have little or no effect on other portions of the curve.

Piecewise Cubic Hermite Polynomials

Let x(t) and y(t) be the parametric representation of the curve which interpolates the points $(x_i, y_i), 0 \le i \le n$. For each portion of the curve, the following 6 conditions hold:

$$\begin{aligned} x(t_i) &= x_i, \ y(t_i) = y_i, \ x(t_{i+1}) = x_{i+1}, \ y(t_{i+1}) = y_{i+1}, \\ dy/dx|_{t=t_i} &= y'(x_i), \ dy/dx|_{t=t_{i+1}} = y'(x_{i+1}). \end{aligned}$$

However, each cubic polynomial x(t) and y(t) has 4 parameters for a total of 8.

Suppose that the endpoints are at t = 0 and t = 1. Then the following conditions on the quotients should hold:

$$\left. \frac{dy}{dx} \right|_{t=0} = \frac{y'(0)}{x'(0)}, \quad \left. \frac{dy}{dx} \right|_{t=1} = \frac{y'(1)}{x'(1)}. \tag{16}$$

The actual values of x'(0) and y'(0) can be scaled by a common factor and still satisfy the first relation in (16). Similarly, the actual values of x'(1) and y'(1) can be scaled by a common factor and still satisfy the second relation in (16).

To simplify the process of specifying the slopes and to obtain a unique curve, commercial software commonly specifies a second point, called a *guidepoint*, which lies on the desired tangent line.

Let (x_0, y_0) and (x_1, y_1) be the endpoints, and $(x_0 + \alpha_0, y_0 + \beta_0)$ and $(x_1 - \alpha_1, y_1 - \beta_1)$ be the guidepoints. The cubic Hermite polynomial x(t) satisfies

$$x(0) = x_0, \ x(1) = x_1, \ x'(0) = \alpha_0, \ x'(1) = \alpha_1.$$
 (17)

Similarly, the cubic Hermite polynomial y(t) satisfies

$$y(0) = y_0, \ y(1) = y_1, \ y'(0) = \beta_0, \ y'(1) = \beta_1.$$
 (18)

Then the unique cubic polynomials x(t) and y(t) which satisfy the conditions in (17) and (18) respectively are

$$\begin{aligned} x(t) &= (2(x_0 - x_1) + (\alpha_0 + \alpha_1))t^3 + \\ &\quad (3(x_1 - x_0) - (\alpha_1 + 2\alpha_0))t^2 + \alpha_0 t + x_0, \\ y(t) &= (2(y_0 - y_1) + (\beta_0 + \beta_1))t^3 + \\ &\quad (3(y_1 - y_0) - (\beta_1 + 2\beta_0))t^2 + \beta_0 t + x_0. \end{aligned}$$