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Interpolation (Part II)

Simon Fraser University – Surrey Campus

MACM 316 – Spring 2005

Instructor: Ha Le
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Piecewise Polynomial Interpolation

• Interpolation of data of the form (xi, yi), i = 0, . . . , n, for (much)

larger n than that for polynomial interpolation.

• The x values are required to be ordered, i.e., xi < xi+1. They

define a partition of n subintervals of the total interval x0 < x < xn.

• Use of a different (low degree) polynomial for each subinterval.

These polynomials are patched together to give a piecewise

polynomial approximation.

• xk: a node, a breakpoint, or a knot of the piecewise polynomial.

2



'

&

$

%

Cubic Spine Interpolants

Given a function f defined on [a, b], and a set of n + 1 nodes

a = x0 < x1 < · · · < xn = b, a cubic spline interpolant S for f is a

function that satisfies the following conditions:

a. S(x) is a cubic polynomial, denoted Sj(x), on the subinterval

[xj , xj+1] for each 0 ≤ j ≤ n − 1;

b. S(x) is an interpolant, i.e., S(xj) = f(xj) for each 0 ≤ j ≤ n;

c. S(x) is continuous, i.e., Sj+1(xj+1) = Sj(xj+1) for each

0 ≤ j ≤ n − 2;
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d. S(x) is continuously differentiable, i.e., S ′
j+1(xj+1) = S′

j(xj+1)

for each 0 ≤ j ≤ n − 2;

e. S(x) is twice continuously differentiable, i.e.,

S′′
j+1(xj+1) = S′′

j (xj+1) for each 0 ≤ j ≤ n − 2;

f. One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (free or natural boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).
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Boundary Conditions: a Justification

Consider the cubic polynomial Sj(x) defined on [xj , xj+1]:

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3.

• n intervals and 4 unknowns (aj , bj , cj and dj) to determine a

cubic polynomial on each subinterval =⇒ 4n unknowns.

• Sj(xj) = f(xj), Sj(xj+1) = f(xj+1), 0 ≤ j ≤ n − 1 =⇒ 2n eqns.

S′
j+1(xj+1) = S′

j(xj+1) and S′′
j+1(xj+1) = S′′

j (xj+1), 0 ≤ j ≤ n − 2

=⇒ 2(n − 1) eqns. Hence, 4n − 2 eqns in total.

• Need 2 more equations =⇒ boundary conditions.
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Cubic Spline Interpolants: a Construction

Sj(x) = aj +bj(x−xj)+cj(x−xj)
2+dj(x−xj)

3, 0 ≤ j ≤ n−1. (1)

Define hj = xj+1 − xj , 0 ≤ j ≤ n − 1. By (1),

Sj(xj) = aj = f(xj), 0 ≤ j ≤ n − 1. (2)

• Define an = f(xn). By condition (c),

aj+1 = aj + bjhj + cjh
2
j + djh

3
j , 0 ≤ j ≤ n − 1. (3)

• S′
j(x) = bj + 2cj(x − xj) + 3dj(x − xj)

2. Define bn = S′(xn). By

condition (d),

bj+1 = bj + 2cjhj + 3djh
2
j , 0 ≤ j ≤ n − 1. (4)

• S′′
j (x) = 2cj + 6dj(x − xj). Define cn = S′′(xn)/2. By
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condition (e),

cj+1 = cj + 3djhj , 0 ≤ j ≤ n − 1. (5)

By (5), (3), (4), for each 0 ≤ j ≤ n − 1,

aj+1 = aj + bjhj +
h2

j

3
(2cj + cj+1), (6)

bj+1 = bj + hj(cj + cj+1). (7)

By (6),

bj =
1

hj

(aj+1 − aj) −
hj

3
(2cj + cj+1). (8)

By (7) and (8), for 1 ≤ j ≤ n − 1,

hj−1cj−1+2(hj−1+hj)cj+hjcj+1 =
3

hj

(aj+1−aj)−
3

hj−1
(aj−aj−1).

(9)
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Example. With n = 5, by (9),

h0c0 + 2(h0 + h1)c1 + h1c2 =
3

h1
(a2 − a1) −

3

h0
(a1 − a0),

h1c1 + 2(h1 + h2)c2 + h2c3 =
3

h2
(a3 − a2) −

3

h1
(a2 − a1),

h2c2 + 2(h2 + h3)c3 + h3c4 =
3

h3
(a4 − a3) −

3

h2
(a3 − a2),

h3c3 + 2(h3 + h4)c4 + h4c5 =
3

h4
(a5 − a4) −

3

h3
(a4 − a3).

(10)

Remark. (10) is a linear system of 4 equations in 6 unknowns ci,

0 ≤ i ≤ 5.
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Strictly Diagonally Dominant Matrix

Definition. An n × n matrix A is strictly diagonally dominant if

|aii| >
n∑

j=1,j 6=i

|aij |

holds for each i = 1, 2, . . . , n.

Theorem. A strictly diagonally dominant matrix is invertible.

9



'

&

$

%

Natural Boundary Conditions

Recall.

S′′(x0) = S′′(xn) = 0. (11)

By (11),

S′′
0 (x) = 2c0 + 6d0(x − x0) =⇒ c0 =

1

2
S′′(x0)
︸ ︷︷ ︸

0

= 0. (12)

cn =
1

2
S′′(xn)
︸ ︷︷ ︸

0

= 0 (13)

The combination of (9), (12) and (13) results in a linear system of

equations Ax = b to be solved for x = [c0, c1, . . . , cn]t.

10



'

&

$

%

Example. With n = 5,

A =
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1 0 0 0 0 0

h0 2 (h0 + h1) h1 0 0 0
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0 0 0 0 0 1
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− 3
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h2

− 3
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3
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, 0

	

t
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• The matrix A in the linear system Ax = b is strictly diagonally

dominant. Hence, A is invertible, and a unique solution

x = [c0, c1, . . . , cn]t exists.

• The matrix A is tridiagonal: all the entries are zero except for a

band which is three-entry wide centered on the main diagonal.

Solutions to tridiagonal linear systems can be found very efficiently:

only O(n) operations are needed using methods we shall discuss

later.
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A Note on Clamped Boundary Conditions

With the clamped boundary conditions: S ′(x0) = f ′(x0),

S′(xn) = f ′(xn), one can derive the following two equations:

2h0c0 + h0c1 =
3

h0
(a1 − a0) − 3f ′(x0), (14)

hn−1cn−1 + 2hn−1cn = 3f ′(xn) −
3

hn−1
(an − an−1). (15)

With the combination of (9), (14) and (15), as in the case of

natural boundary conditions, the problem of computing the

coefficients x = [c0, c1, . . . , cn]t is reduced to solving a linear system

of equations Ax = b. The matrix A is strictly diagonally dominant,

and also tridiagonal. Hence, a unique solution exists, and can be

efficiently computed.
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Example. With n = 5,

A =
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Cubic Spline Interpolants: Error-Bound Formula

Let f ∈ C4[a, b] with maxa≤x≤b |f
(4)(x)| = M . If S is the unique

clamped cubic spline interpolant to f with respect to the nodes

a = x0 < x1 < · · · < xn = b, then

max
a≤x≤b

|f(x) − S(x)| ≤
5M

384
max

0≤j≤n−1
(xj+1 − xj)

4.

Remark. A fourth-order error bound also exists for the case of

natural boundary conditions.
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Parametric Curves

The interpolating polynomials and splines can only be used to

interpolate functions.

Given S = {(x0, y0), (x1, y1), . . . , (xn, yn)} with

x0 < x1 < · · · < xn :

• define a parameter t on the interval [t0, tn] with

t0 < t1 < · · · < tn;

• construct interpolating functions x(t) and y(t) separately:

x(ti) = xi, y(ti) = yi for 0 ≤ i ≤ n

using interpolating polynomials or splines.
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Parametric Curves: an Example

i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1

xi -1 0 1 0 1

yi 0 1 0.5 0 -1

• Using Lagrange interpolating polynomials for x(t) and y(t):

x(t) = −
32

3
(t − 1/4) (t − 1/2) (t − 3/4) (t − 1) + 64 t (t − 1/4) ×

(t − 3/4) (t − 1) +
32

3
t (t − 1/4) (t − 1/2) (t − 3/4) ,

y(t) = −
128

3
t (t − 1/2) (t − 3/4) (t − 1) + 32 t (t − 1/4) ×

(t − 3/4) (t − 1) −
32

3
t (t − 1/4) (t − 1/2) (t − 3/4) .
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–1
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0.5

1

–1 –0.5 0.5 1

Remark. Moving a single data point effects the entire curve. It is

desirable, e.g., in computer graphics, that changing one portion of a

curve should have little or no effect on other portions of the curve.
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Piecewise Cubic Hermite Polynomials

Let x(t) and y(t) be the parametric representation of the curve

which interpolates the points (xi, yi), 0 ≤ i ≤ n. For each portion

of the curve, the following 6 conditions hold:

x(ti) = xi, y(ti) = yi, x(ti+1) = xi+1, y(ti+1) = yi+1,

dy/dx|t=ti
= y′(xi), dy/dx|t=ti+1

= y′(xi+1).

However, each cubic polynomial x(t) and y(t) has 4 parameters for

a total of 8.

Suppose that the endpoints are at t = 0 and t = 1. Then the

following conditions on the quotients should hold:

dy

dx

∣
∣
∣
∣
t=0

=
y′(0)

x′(0)
,

dy

dx

∣
∣
∣
∣
t=1

=
y′(1)

x′(1)
. (16)
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The actual values of x′(0) and y′(0) can be scaled by a common

factor and still satisfy the first relation in (16). Similarly, the

actual values of x′(1) and y′(1) can be scaled by a common factor

and still satisfy the second relation in (16).

To simplify the process of specifying the slopes and to obtain a

unique curve, commercial software commonly specifies a second

point, called a guidepoint, which lies on the desired tangent line.

Let (x0, y0) and (x1, y1) be the endpoints, and (x0 + α0, y0 + β0)

and (x1 − α1, y1 − β1) be the guidepoints. The cubic Hermite

polynomial x(t) satisfies

x(0) = x0, x(1) = x1, x′(0) = α0, x′(1) = α1. (17)

Similarly, the cubic Hermite polynomial y(t) satisfies

y(0) = y0, y(1) = y1, y′(0) = β0, y′(1) = β1. (18)
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Then the unique cubic polynomials x(t) and y(t) which satisfy the

conditions in (17) and (18) respectively are

x(t) = (2(x0 − x1) + (α0 + α1))t
3 +

(3(x1 − x0) − (α1 + 2α0))t
2 + α0t + x0,

y(t) = (2(y0 − y1) + (β0 + β1))t
3 +

(3(y1 − y0) − (β1 + 2β0))t
2 + β0t + x0.
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