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Overview

• General Linear Systems

• Gaussian Elimination

• Triangular Systems

• The LU Factorization

• Pivoting

• Special Linear Systems

• Strictly Diagonally Dominant Matrices

• The LDMT and LDLT Factorizations

• Positive Definite Systems

• Tridiagonal Systems
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Linear Systems of Equations

• For a linear system of equations

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1,

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2,

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

an,1x1 + an,2x2 + · · · + an,nxn = bn;

or equivalently, in matrix/vector notation: (A)n×n(x)n×1 = (b)n×1:









a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

...
...

an,1 an,2 . . . an,n

















x1

x2
...

xn









=









b1

b2
...

bn









, (1)

find x = [x1, x2, . . . , xn]
T

such that the relation Ax = b holds.
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Gaussian Elimination

• A process of reducing the given linear system to a new linear

system in which the unknowns xi’s are systematically eliminated;

• The reduction is done via elementary row operations;

• It may be necessary to reorder the equations to accomplish this,

i.e., use equation pivoting.
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Elementary Row Operations

• Type 1: interchange two rows of a matrix: (i) ↔ (j);

• Type 2: replacing a row by the same row multiplied by a

nonzero constant: (i) → λ (i), λ ∈ � \ {0};

• Type 3: replacing a row by the same row plus a constant

multiple of another row: (j) → (j) + λ (i), λ ∈ � .
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Gaussian Elimination: an Example
� ����

�

1 4 7 | 30

2 5 8 | 36

3 6 10 | 45
� ����

�� �	 

augmented matrix

(2)→(2)−(a2,1/a1,1)(1)

(3)→(3)−(a3,1/a1,1)(1)
=⇒

� ����
�

1 4 7 | 30

0 −3 −6 | −24

0 −6 −11 | −45

� ����
�

(3)→(3)−(a3,2/a2,2)(2) =⇒
� ����

�

1 4 7 | 30

0 −3 −6 | −24

0 0 1 | 3

� ����
�

x3 = 3,

−3x2 − 6x3 = −24 =⇒ x2 = 2,

x1 + 4x2 + 7x3 = 30 =⇒ x1 = 1.
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Triangular Systems: Forward Substitution

Consider the following 2-by-2 lower triangular system:





l1,1 0

l2,1 l2,2











x1

x2




 =






b1

b2




 .

If l1,1l2,2 6= 0, then x1 = b1/l1,1, x2 = (b2 − l2,1x1)/l2,2.

The general procedure is obtained by solving the ith equation in

Lx = b for xi:

xi =

(

bi −
∑i−1

j=1 li,jxj

)

li,i
.

Flop count:
n∑

i=2




(i − 1)

︸ ︷︷ ︸

mul

+ (i − 2)
︸ ︷︷ ︸

add

+ 1
︸︷︷︸

sub

+ 1
︸︷︷︸

div




 = n2.
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Triangular Systems: Back Substitution

Consider the following 2-by-2 upper triangular system:





u1,1 u1,2

0 u2,2











x1

x2




 =






b1

b2




 .

If u1,1u2,2 6= 0, then x2 = b2/u2,2, x1 = (b1 − u1,2x2)/u1,1.

The general procedure is obtained by solving the ith equation in

Ux = b for xi:

xi =

(

bi −
∑n

j=i+1 ui,jxj

)

ui,i

.

Flop count: n2
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The Algebra of Triangular Matrices

Definition. A unit triangular matrix is a triangular matrix with

ones on the diagonal.

Properties.

• The inverse of an upper (lower) triangular matrix is upper

(lower) triangular;

• The product of two upper (lower) triangular matrices is upper

(lower) triangular;

• The inverse of a unit upper (lower) triangular matrix is a unit

upper (lower) triangular;

• The product of two unit upper (lower) triangular matrices is

unit upper (lower) triangular.
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The LU Factorization

1. Compute a unit lower triangular L and an upper triangular U

such that A = LU ;

2. Solve Lz = b (forward substitution);

3. Solve Ux = z (back substitution).

Example.





3 5

6 7






︸ ︷︷ ︸

A

=






1 0

2 1






︸ ︷︷ ︸

L






3 5

0 −3






︸ ︷︷ ︸

U

.

For b = [1, 4]
T
, solving Lz = b yields z = [1, 2]

T
, and solving

Ux = z yields x = [13/9,−2/3]
T
.
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LU Factorization: an Example

Example.
� ����

�

1 4 7

2 5 8

3 6 10

� ����
�� �	 


A

(2)→(2)−(a2,1/a1,1)(1)

(3)→(3)−(a3,1/a1,1)(1)
=⇒

� ����
�

1 4 7

0 −3 −6

0 −6 −11

� ����
�� �	 


A1

Note that M1 · A = A1 where M1 is the unit lower triangular
matrix

M1 =

� �����
�

1 0 0

− a2,1

a1,1
1 0

− a3,1

a1,1
0 1

� �����
�
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� ����
�

1 4 7

0 −3 −6

0 −6 −11

� ����
�� �	 


A1

(3)→(3)−(a3,2/a2,2)(2) =⇒

� ����
�

1 4 7

0 −3 −6

0 0 1

� ����
�� �	 


A2

Note that M2 · A1 = A2 where M2 is the unit lower triangular
matrix

M2 =

� �����
�

1 0 0

0 1 0

0 − a3,2

a2,2
1

� �����
�

Hence, M2M1A = A2, or equivalently, A = M−1
1 M−1

2
︸ ︷︷ ︸

L

A2
︸︷︷︸

U

.
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Also,

M−1
1 =

� �����
�

1 0 0

− a2,1

a1,1
1 0

− a3,1

a1,1
0 1

� �����
�

−1

=

� �����
�

1 0 0

a2,1

a1,1
1 0

a3,1

a1,1
0 1

� �����
�

,

M−1
2 =

� �����
�

1 0 0

0 1 0

0 − a3,2

a2,2
1

� �����
�

−1

=

� �����
�

1 0 0

0 1 0

0
a3,2

a2,2
1

� �����
�

,

L = M−1
1 M−1

2 =

� �����
�

1 0 0

a2,1

a1,1
1 0

a3,1

a1,1

a3,2

a2,2
1

� �����
�

.
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Gauss Transformation

Suppose x ∈ � n with xk 6= 0. If

τT = [0, . . . , 0
︸ ︷︷ ︸

k

, τk+1, . . . , τn], τi =
xi

xk

for (k + 1) ≤ i ≤ n

and we define Mk = I − τ eT
k , where eT

k = [0, . . . , 0
︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0],

Mk x =

� ����������


1 . . . 0 0 . . . 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 1 0 0

0 −τk+1 1 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 . . . −τn 0 . . . 1

� ����������
�

� ����������


x1

..

.

xk

xk+1

.

..

xn

� ����������
�

=

� ����������


x1

.

.

.

xk

0
.
.
.

0

� ����������
�

,

Mk: Gauss transformation; τk+1, . . . , τn: multipliers.
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Upper Triangularizing

Assume that A ∈ � n×n, Gauss transformation M1, . . . , Mn−1 can

usually be found such that Mn−1 · · ·M2M1A = U is upper

triangular. During the kth step:

• We are confronted with the matrix A(k−1) = Mk−1 · · ·M1A

that is upper triangular in columns 1 to k − 1;

• The multipliers in Mk are based on a
(k−1)
k+1,k, . . . , a

(k−1)
n,k . In

particular, we need a
(k−1)
k,k 6= 0 to proceed.

15



'

&

$

%

The LU Factorization

• Let M1, . . . , Mn−1 be the Gauss transforms such that

Mn−1 · · ·M1A = U is upper triangular. If Mk = I − τ (k) eT
k , then

M−1
k = I + τ (k) eT

k . Hence,

A = LU where L = M−1
1 · · ·M−1

n−1.

• L is a unit lower triangular matrix since each M−1
k is unit lower

triangular (p.9).

• Let τ (k) be the vector of multipliers associated with Mk then

upon termination, A[k + 1..n, k] = τ (k).

16
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The LU Factorization: an Algorithm Description

Algorithm LUFactorization(A)

input: an n-by-n (square) matrix L

output: the LU factorization of A, provided it exists

for i from 1 to n do

for k from i + 1 to n do

mult := ak,i/ai,i;

ak,i := mult;

for j from i + 1 to n do

ak,j := ak,j − mult × ai,j ;

od;

od;

od;

return A.
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The LU Factorization: Flop Count

Definition. A flop is a floating-point operation. There is no

standard agreement on this terminology. We shall adopt the

MATLAB convention, which is to count the total number of

operations. The flop count will include the total number of

adds + multiplies + divides + subtracts.

• For LU factorization:

n∑

i=1

n∑

k=i+1



1 +

n∑

j=i+1

2



 =
2

3
n3 − 1

2
n2 − 1

6
n = O(n3) flops

• Recall that for forward substitution (p.7) and back substitution

(p.8): O(n2) flops.
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The LU Factorization: Sufficient Conditions

Definition. A leading principal submatrix of a matrix A is a matrix

of the form

Ak =









a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k

...
...

...
...

ak,1 ak,2 . . . ak,k









for some 1 ≤ k ≤ n.

Theorem. A ∈ � n×n has an LU factorization if for 1 ≤ k ≤ n − 1,

det(Ak) 6= 0 where the Ak’s are the leading principal submatrices of

A. If the LU factorization exists and A is nonsingular, then the LU

factorization is unique and det(A) = u1,1 · · ·un,n.
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Partial Pivoting

• Row interchanges, i.e., elementary row operation of type 1 (see

p.5) are needed when one of the pivot elements a
(k)
k,k = 0.

• Row interchanges are often necessary even when the pivot 6= 0:

• If |a(k)
k,k| � |a(k)

j,k | for some j (k + 1 ≤ j ≤ n), the multiplier

mj,k = a
(k)
j,k/a

(k)
k,k will be very large. Roundoff error that was

produced in the computation of a
(k)
k,l will be multiplied by the

large factor mj,k when computing a
(k+1)
j,l ;

• Roundoff error can also be dramatically increased in the back

substitution step xk =
a
(k)
k,n+1 −

∑n
j=k+1 a

(k)
k,j

a
(k)
k,k

when the pivot

a
(k)
k,k is small.
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Example. For the linear system

E1 : 0.003000x1 + 59.14x2 = 59.17,

E2 : 5.291x1 − 6.130x2 = 46.78.

(x1)E = 10.00, (x2)E = 1.000, (x1)A = −10.00, (x2)A = 1.001

(Gaussian elimination, four-digit arithmetic rounding).

• a
(1)
1,1 = 0.003000 =⇒ m2,1 = 5.291/0.003000 ≈ 1764.

Apply (E2) −→ (E2 − m2,1E1):

E1 : 0.003000x1 + 59.14x2 ≈ 59.17,

E2 : −104300x2 ≈ −104400.

Back substitution =⇒ x2 ≈ 1.001. However, since the pivot a1,1 is

small, x1 ≈ (59.17 − (59.14)(1.001))/0.003000 = −10.00 contains

the small error 0.001 multiplied by 59.14/0.003000 ≈ 20000.
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Pivoting Strategy

• Select the largest element a
(k)
i,k that is below the pivot a

(k)
k,k: if

maxj=k,...,n

∣
∣
∣a

(k)
j,k

∣
∣
∣ =

∣
∣
∣a

(k)
k∗,k

∣
∣
∣, then swap row k∗ with row k, and use

a
(k)
k∗,k to form the multiplier.

Example. For the linear system {E1, E2} on p.21, since a1,1 < a2,1,

rows 1 and 2 are swapped. This leads to the correct solution

x1 = 10.00, x2 = 1.0000.
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Permutation Matrices

• A permutation matrix is just the identity matrix with its rows

re-ordered.

• If P is a permutation and A is a matrix, then PA is a row
permuted version of A, and AP is a column permuted version of A,
e.g.,

P =

� ��������
�

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

� ��������
�

, PA =
� ��������

�

a4,1 a4,2 a4,3 a4,4

a1,1 a1,2 a1,3 a1,4

a3,1 a3,2 a3,3 a3,4

a2,1 a2,2 a2,3 a2,4

� ��������
�

.

• If P is a permutation, then P−1 = PT (P is orthogonal).

23



'

&

$

%

• An interchange permutation is obtained by merely swapping two

rows in the identity.

• If P = En · · ·E1 and each Ek is the identity with rows k and p(k)

interchanged, then the vector p(1 : n) is a useful vector encoding of

P , e.g., [4, 4, 3, 4] is the vector encoding of P on p.23.

• No floating point arithmetic is involved in a permutation

operation. However, permutation matrix operations often involve

the irregular movement of data, and can represent a significant

computational overhead.
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Partial Pivoting: the Basic Idea

A =

� ����
�

3 17 10

2 4 −2

6 18 −12

� ����
�

• (1) ↔ (3), p[1] = 3:

E1 =

� ����
�

0 0 1

0 1 0

1 0 0

� ����
�

, E1A =

� ����
�

6 18 −12

2 4 −2

3 17 10

� ����
�

,

M1 =

� ����
�

1 0 0

−1/3 1 0

−1/2 0 1

� ����
�

, M1E1A =
� ����

�
6 18 −12

0 −2 2

0 8 16

� ����
�

.
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• (2) ↔ (3), p[2] = 3:

E2 =

� ����
�

1 0 0

0 0 1

0 1 0

� ����
�

, M2 =

� ����
�

1 0 0

0 1 0

0 1/4 1

� ����
�

, M2E2M1E1A =

� ����
�

6 18 −12

0 8 16

0 0 6

� ����
�

• In general, upon completion we emerge with

Mn−1En−1 · · ·M1E1A = U , an upper triangular matrix.

• To solve the linear system Ax = b, we

• Compute y = Mn−1En−1 · · ·M1E1b;

• Solve the upper triangular system Ux = y.

All the information necessary to do this is contained in the array A

and the vector p.

• Cost. O(n2) comparisons associated with the search for the

pivots. The overall algorithm involves 2n3/3 flops.
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Scaled Partial Pivoting

• Scale the coefficients before deciding on row exchanges;

• Scale factor: for row i, Si = maxj=1,2,...,n |ai,j |;

• Let k + 1 ≤ j ≤ n be such that

|a(k)
j,k/Sj | = max

i=k+1,...,n
|a(k)

i,k /Si|.

If |a(k)
j,k/Sj | > |a(k)

k,k/Sk| then rows j and k are exchanged.
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Example. For

A =

� ����
�

2.11 −4.21 0.921

4.01 10.2 −1.12

1.09 0.987 0.832

� ����
�

,

s1 = 4.21, s2 = 10.2, s3 = 1.09

|a1,1|
s1

= 0.501,
|a2,1|
s2

= 0.393,
|a3,1|
s3

= 4.21.

• (1) ↔ (3)

� ����
�

1.09 0.987 0.832

4.01 10.2 −1.12

2.11 −4.21 0.921

� ����
�

.

Compute the multipliers m2,1, m3,1, . . .

• Cost. Additional O(n2) comparisons, and O(n2) flops (divisions).
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Complete Pivoting

• search all the entries ai,j , k ≤ i, j ≤ n, to find the entry with the

largest magnitude. Both row and column interchanges are

performed to bring this entry into the pivot position.

• only recommended for systems where accuracy is essential since it

requires an additional O(n3) comparisons.
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An Application: Multiple Right Hand Side

Suppose A is nonsingular and n-by-n, and that B is n-by-p.

Consider the problem of finding X (n-by-p) so that AX = B. If

X = [x1, . . . , xp] and B = [b1, . . . , bp] are column partitions, then

Compute PA = LU ;

for k from 1 to p do

Solve Ly = Pbk;

Solve Uxk = y;

od;

Note that A is factored just once. If B = In, then we emerge with a

computed A−1.
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Strictly Diagonally Dominant Matrices

Definition. An n× n matrix A is strictly diagonally dominant (sdd)

if



|aii| >
n∑

j=1,j 6=i

|aij |



 holds for each i = 1, 2, . . . , n.

Theorem. An sdd matrix is nonsingular.

Proof. Suppose there is x 6= 0 such that Ax = 0. Then there is

1 ≤ k ≤ n such that |xk| = max1≤j≤n |xj | > 0. Since x is a solution

to Ax = b, ak,kxk +
∑n

j=1,j 6=k ak,jxj = 0. Hence,

|ak,k| ≤
n∑

j=1,j 6=k

|ak,j ||xj |/|xk| ≤
n∑

j=1,j 6=n

|ak,j |.

A contradiction since A is sdd. Hence, x = 0 is the only solution to

Ax = b. Equivalently, A is nonsingular.
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Theorem. Let A be an sdd matrix. Then Gaussian elimination can

be performed on any linear system of the form Ax = b to obtain its

unique solution without row or column interchanges, and the

computations are stable to the growth of roundoff errors.

Proof sketch.

A(1) type 3−→ A(2) . . .
type 3−→ A(n)

x





y



y

sdd sdd sdd
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LDMT and LDLT Factorizations

Theorem. If all the leading principal submatrices of A ∈ � n×n are

nonsingular, then there exist unique lower triangular matrices L

and M and a unique diagonal matrix D = diag(d1, . . . , dn) such

that A = LDMT .

Proof. By the theorem on p.19, A = LU exists. Set

D = diag(d1, . . . , dn) with di = ui,i for 1 ≤ i ≤ n. Since D is

nonsingular and MT = D−1U is unit upper triangular,

A = LU = LD(D−1U) = LDMT . Uniqueness follows from the

uniqueness of the LU factorization.

Theorem. If A = LDMT is the LDMT factorization of a

nonsingular symmetric matrix A, then L = M .
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Example. For the matrix

A =

� ����
�

1 4 7

4 5 8

7 8 10

� ����
�

,

The LU factorization of A is

L =

� ����
�

1 0 0

4 1 0

7 20
11

1
� ����

�
, U =

� ����
�

1 4 7

0 −11 −20

0 0 − 29
11

� ����
�

.

Set

D = diag(U) =

� ����
�

1 0 0

0 −11 0

0 0 − 29
11

� ����
�

.
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Then the matrix MT in the LDMT factorization of A is

MT =









1 4 7

0 1 20
11

0 0 1









.

Since A is symmetric, MT = LT and we have the LDLT

factorization of A.

Remark. It is possible to compute the matrices L, D, and M

directly, instead of computing them via the LU factorization.
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Positive Definite Matrices

Definition. A matrix A is positive definite if xT Ax > 0 for every

nonzero n-dimensional column vector x.

Theorem. If A is an n × n positive definite matrix, then

a. A is nonsingular;

b. ai,i > 0, for each 1 ≤ i ≤ n;

c. max1≤k,j≤n |ak,j | ≤ max1≤i≤n |ai,i|;

d. (ai,j)
2 < ai,iaj,j , for each i 6= j.

Theorem. A symmetric matrix A is positive definite if and only if

each of its leading principal submatrices has a positive determinant.

36



'

&

$

%

Example. For

A =

� ����
�

2 −1 0

−1 2 −1

0 −1 2

� ����
�

,

• det A1 = det � 2 � = 2 > 0,

• det A2 = det

� �
�

2 −1

−1 2
� �

�
= 3 > 0,

• det A3 = det A = 4 > 0.

Since A is also symmetric, A is positive definite.

Theorem. A symmetric matrix A is positive definite if and only if

Gaussian elimination without row exchanges can be performed on

the linear system Ax = b with all the pivot elements positive.

Moreover, in this case, the computations are stable with respect to

the growth of roundoff errors.
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Theorem. (Cholesky Factorization) If A ∈ � n×n is positive

definite, then there exists a unique lower triangular G ∈ � n×n with

positive diagonal entries such that A = GGT .

Proof. By the second theorem of p.33, there exists a unit lower

triangular L and a diagonal D = diag(d1, . . . , dn) such that

A = LDLT . Since the dk are positive, the matrix

G = Ldiag(
√

d1, . . . ,
√

dn) is real lower triangular with positive

diagonal entries. It also satisfies A = GGT . Uniqueness follows

from the uniqueness of LDLT factorization.
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Example. For the positive definite matrix A on p.37, the matrices
L and D in the LDLT factorization for A are

L =
� ����

�
1 0 0

−1/2 1 0

0 −2/3 1

� ����
�

, D =

� ����
�

2 0 0

0 3/2 0

0 0 4/3

� ����
�

.

Hence, the matrix G = Ldiag(
√

d1,
√

d2,
√

d3) in the GGT

factorization of A is

G =

� ����
�

√
2 0 0

−1/2
√

2 1/2
√

6 0

0 −1/3
√

6 2/3
√

3

� ����
�

.
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Tridiagonal Matrices

• Matrices of the form

A =

� ����������������


a1,1 a1,2 0 . . . . . . . . . 0

a2,1 a2,2 a2,3

.

..

0 a3,2 a3,3 a3,4

.

.

.

.

.

.
.
.
.

..

. 0

.

.

. an−1,n

0 . . . . . . . . . 0 an,n−1 an,n

� ����������������
�

40



'

&

$

%

Now suppose A can be factored into the triangular matrices L
and U . Suppose that the matrices can be found in the form

L =

� ���������


l1,1 0 . . . . . . 0

l2,1 l2,2

.

..

0
.
.
.

.

.

. 0

0 . . . 0 ln,n−1 ln,n

� ���������
�

, U =

� ���������


1 u1,2 0 . . . 0

0 1
.
.
.

.

.

. 0

.

.

. un−1,n

0 . . . . . . 0 1

� ���������
�

.

The zero entries of A are automatically generated by LU .
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Multiplying A = LU , we also find the following conditions:

a1,1 = l1,1; (2)

ai,i−1 = li,i−1, for each i = 2, 3, . . . , n; (3)

ai,i = li,i−1ui−1,i + li,i, for each i = 2, 3, . . . , n; (4)

ai,i+1 = li,iui,i+1, , for each i = 1, 2, . . . , n − 1. (5)

This system is straightforward to solve: (2) and (3) give us l1,1 and

the off-diagonal entries of L, (4) and (5) are used alternately to

obtain the remaining entries of L and U .

This solution technique is often referred to as Crout factorization.

Cost. (5n − 4) multiplications/divisions; (3n − 3)

additions/subtractions.
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