Direct Methods for Solving Linear Systems

Simon Fraser University - Surrey Campus
MACM 316 - Spring 2005
Instructor: Ha Le

Overview

- General Linear Systems
- Gaussian Elimination
- Triangular Systems
- The LU Factorization
- Pivoting
- Special Linear Systems
- Strictly Diagonally Dominant Matrices
- The LDM^{T} and LDL^{T} Factorizations
- Positive Definite Systems
- Tridiagonal Systems

Linear Systems of Equations

- For a linear system of equations

$$
\begin{array}{ccccccc}
a_{1,1} x_{1} & +a_{1,2} x_{2} & + & \cdots & +a_{1, n} x_{n} & = & b_{1}, \\
a_{2,1} x_{1} & + & a_{2,2} x_{2} & + & \cdots & + & a_{2, n} x_{n}
\end{array}=b_{2},
$$

or equivalently, in matrix/vector notation: $(A)_{n \times n}(x)_{n \times 1}=(b)_{n \times 1}$:

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \tag{1}\\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

find $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ such that the relation $A x=b$ holds.

Gaussian Elimination

- A process of reducing the given linear system to a new linear system in which the unknowns x_{i} 's are systematically eliminated;
- The reduction is done via elementary row operations;
- It may be necessary to reorder the equations to accomplish this, i.e., use equation pivoting.

Elementary Row Operations

- Type 1: interchange two rows of a matrix: $(i) \leftrightarrow(j)$;
- Type 2: replacing a row by the same row multiplied by a nonzero constant: $(i) \rightarrow \lambda(i), \lambda \in \mathbb{R} \backslash\{0\}$;
- Type 3: replacing a row by the same row plus a constant multiple of another row: $(j) \rightarrow(j)+\lambda(i), \lambda \in \mathbb{R}$.

Gaussian Elimination: an Example

$\left[\begin{array}{ccccc}1 & 4 & 7 & \mid & 30 \\ 2 & 5 & 8 & \mid & 36 \\ 3 & 6 & 10 & \mid & 45\end{array}\right] \begin{gathered}(2) \rightarrow(2)-\left(a_{2,1} / a_{1,1}\right)(1) \\ (3) \rightarrow(3)-\left(a_{3,1} / a_{1,1}\right)(1)\end{gathered} \Longrightarrow\left[\begin{array}{ccc|c}1 & 4 & 7 & \mid \\ 0 & -3 & -6 & \mid \\ 0 & -24 \\ 0 & -6 & -11 & \mid \\ \hline\end{array}\right]$
augmented matrix

$$
\begin{aligned}
& { }_{(3) \rightarrow(3)-\left(a_{3,2} / a_{2,2}\right)(2)} \Longrightarrow\left[\begin{array}{ccccc}
1 & 4 & 7 & \mid & 30 \\
0 & -3 & -6 & \mid & -24 \\
0 & 0 & 1 & \mid & 3
\end{array}\right] \\
& x_{3}=3, \\
& -3 x_{2}-6 x_{3}=-24 \Longrightarrow x_{2}=2, \\
& x_{1}+4 x_{2}+7 x_{3}=30 \Longrightarrow x_{1}=1
\end{aligned}
$$

Triangular Systems: Forward Substitution

Consider the following 2-by-2 lower triangular system:

$$
\left[\begin{array}{cc}
l_{1,1} & 0 \\
l_{2,1} & l_{2,2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

If $l_{1,1} l_{2,2} \neq 0$, then $x_{1}=b_{1} / l_{1,1}, x_{2}=\left(b_{2}-l_{2,1} x_{1}\right) / l_{2,2}$.
The general procedure is obtained by solving the i th equation in $L x=b$ for x_{i} :

$$
x_{i}=\frac{\left(b_{i}-\sum_{j=1}^{i-1} l_{i, j} x_{j}\right)}{l_{i, i}} .
$$

Flop count: $\sum_{i=2}^{n}(\underbrace{(i-1)}_{\text {mul }}+\underbrace{(i-2)}_{\text {add }}+\underbrace{1}_{\text {sub }}+\underbrace{1}_{\text {div }})=n^{2}$.

Triangular Systems: Back Substitution

Consider the following 2-by-2 upper triangular system:

$$
\left[\begin{array}{cc}
u_{1,1} & u_{1,2} \\
0 & u_{2,2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

If $u_{1,1} u_{2,2} \neq 0$, then $x_{2}=b_{2} / u_{2,2}, x_{1}=\left(b_{1}-u_{1,2} x_{2}\right) / u_{1,1}$.
The general procedure is obtained by solving the i th equation in $U x=b$ for x_{i} :

$$
x_{i}=\frac{\left(b_{i}-\sum_{j=i+1}^{n} u_{i, j} x_{j}\right)}{u_{i, i}}
$$

Flop count: n^{2}

The Algebra of Triangular Matrices

Definition. A unit triangular matrix is a triangular matrix with ones on the diagonal.

Properties.

- The inverse of an upper (lower) triangular matrix is upper (lower) triangular;
- The product of two upper (lower) triangular matrices is upper (lower) triangular;
- The inverse of a unit upper (lower) triangular matrix is a unit upper (lower) triangular;
- The product of two unit upper (lower) triangular matrices is unit upper (lower) triangular.

The LU Factorization

1. Compute a unit lower triangular L and an upper triangular U such that $A=L U$;
2. Solve $L z=b$ (forward substitution);
3. Solve $U x=z$ (back substitution).

Example.

$$
\underbrace{\left[\begin{array}{ll}
3 & 5 \\
6 & 7
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{cc}
3 & 5 \\
0 & -3
\end{array}\right]}_{U}
$$

For $b=[1,4]^{T}$, solving $L z=b$ yields $z=[1,2]^{T}$, and solving $U x=z$ yields $x=[13 / 9,-2 / 3]^{T}$.

LU Factorization: an Example

Example.

$$
\underbrace{\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right]}_{\substack{(2) \rightarrow(2)-\left(a_{2,1} / a_{1,1}\right)(1) \\
(3) \rightarrow(3)-\left(a_{3,1} / a_{1,1}\right)(1)}}
$$

Note that $M_{1} \cdot A=A_{1}$ where M_{1} is the unit lower triangular matrix

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{2,1}}{a_{1,1}} & 1 & 0 \\
-\frac{a_{3,1}}{a_{1,1}} & 0 & 1
\end{array}\right]
$$

$$
\underbrace{\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right]}_{A_{1}}{ }_{(3) \rightarrow(3)-\left(a_{3,2} / a_{2,2}\right)(2)} \Longrightarrow \underbrace{\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]}_{A_{2}}
$$

Note that $M_{2} \cdot A_{1}=A_{2}$ where M_{2} is the unit lower triangular matrix

$$
M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{a_{3,2}}{a_{2,2}} & 1
\end{array}\right]
$$

Hence, $M_{2} M_{1} A=A_{2}$, or equivalently, $A=\underbrace{M_{1}^{-1} M_{2}^{-1}}_{L} \underbrace{A_{2}}_{U}$.

Also,

$$
\begin{gathered}
M_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{2,1}}{a_{1,1}} & 1 & 0 \\
-\frac{a_{3,1}}{a_{1,1}} & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{a_{2,1}}{a_{1,1}} & 1 & 0 \\
\frac{a_{3,1}}{a_{1,1}} & 0 & 1
\end{array}\right], \\
M_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{a_{3,2}}{a_{2,2}} & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{a_{3,2}}{a_{2,2}} & 1
\end{array}\right], \\
L=M_{1}^{-1} M_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{a_{2,1}}{a_{1,1}} & 1 & 0 \\
\frac{a_{3,1}}{a_{1,1}} & \frac{a_{3,2}}{a_{2,2}} & 1
\end{array}\right] .
\end{gathered}
$$

Gauss Transformation

Suppose $x \in \mathbb{R}^{n}$ with $x_{k} \neq 0$. If

$$
\tau^{T}=[\underbrace{0, \ldots, 0}_{k}, \tau_{k+1}, \ldots, \tau_{n}], \quad \tau_{i}=\frac{x_{i}}{x_{k}} \text { for }(k+1) \leq i \leq n
$$

and we define $M_{k}=I-\tau e_{k}^{T}$, where $e_{k}^{T}=[\underbrace{0, \ldots, 0}_{k-1}, 1,0, \ldots, 0]$,

$$
M_{k} x=\left(\begin{array}{cccccc}
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & & 1 & 0 & & 0 \\
0 & & -\tau_{k+1} & 1 & & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & -\tau_{n} & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
x_{k+1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

M_{k} : Gauss transformation; $\tau_{k+1}, \ldots, \tau_{n}$: multipliers.

Upper Triangularizing

Assume that $A \in \mathbb{R}^{n \times n}$, Gauss transformation M_{1}, \ldots, M_{n-1} can usually be found such that $M_{n-1} \cdots M_{2} M_{1} A=U$ is upper triangular. During the k th step:

- We are confronted with the matrix $A^{(k-1)}=M_{k-1} \cdots M_{1} A$ that is upper triangular in columns 1 to $k-1$;
- The multipliers in M_{k} are based on $a_{k+1, k}^{(k-1)}, \ldots, a_{n, k}^{(k-1)}$. In particular, we need $a_{k, k}^{(k-1)} \neq 0$ to proceed.

The LU Factorization

- Let M_{1}, \ldots, M_{n-1} be the Gauss transforms such that $M_{n-1} \cdots M_{1} A=U$ is upper triangular. If $M_{k}=I-\tau^{(k)} e_{k}^{T}$, then $M_{k}^{-1}=I+\tau^{(k)} e_{k}^{T}$. Hence,

$$
A=L U \quad \text { where } L=M_{1}^{-1} \cdots M_{n-1}^{-1} .
$$

- L is a unit lower triangular matrix since each M_{k}^{-1} is unit lower triangular (p.9).
- Let $\tau^{(k)}$ be the vector of multipliers associated with M_{k} then upon termination, $A[k+1 . . n, k]=\tau^{(k)}$.

The LU Factorization: an Algorithm Description

Algorithm LUFactorization (A)
input: an n-by-n (square) matrix L
output: the LU factorization of A, provided it exists
for i from 1 to n do
for k from $i+1$ to n do
mult $:=a_{k, i} / a_{i, i} ;$
$a_{k, i}:=$ mult;
for j from $i+1$ to n do
$a_{k, j}:=a_{k, j}-$ mult $\times a_{i, j} ;$
od;
od;
od;
return A.

The LU Factorization: Flop Count

Definition. A flop is a floating-point operation. There is no standard agreement on this terminology. We shall adopt the MATLAB convention, which is to count the total number of operations. The flop count will include the total number of adds + multiplies + divides + subtracts.

- For LU factorization:

$$
\sum_{i=1}^{n} \sum_{k=i+1}^{n}\left(1+\sum_{j=i+1}^{n} 2\right)=\frac{2}{3} n^{3}-\frac{1}{2} n^{2}-\frac{1}{6} n=O\left(n^{3}\right) \text { flops }
$$

- Recall that for forward substitution (p.7) and back substitution (p.8): $O\left(n^{2}\right)$ flops.

The LU Factorization: Sufficient Conditions

Definition. A leading principal submatrix of a matrix A is a matrix of the form

$$
A_{k}=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, k} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, k} \\
\vdots & \vdots & \vdots & \vdots \\
a_{k, 1} & a_{k, 2} & \ldots & a_{k, k}
\end{array}\right)
$$

for some $1 \leq k \leq n$.
Theorem. $A \in \mathbb{R}^{n \times n}$ has an LU factorization if for $1 \leq k \leq n-1$, $\operatorname{det}\left(A_{k}\right) \neq 0$ where the A_{k} 's are the leading principal submatrices of A. If the LU factorization exists and A is nonsingular, then the LU factorization is unique and $\operatorname{det}(A)=u_{1,1} \cdots u_{n, n}$.

Partial Pivoting

- Row interchanges, i.e., elementary row operation of type 1 (see p.5) are needed when one of the pivot elements $a_{k, k}^{(k)}=0$.
- Row interchanges are often necessary even when the pivot $\neq 0$:
- If $\left|a_{k, k}^{(k)}\right| \ll\left|a_{j, k}^{(k)}\right|$ for some $j(k+1 \leq j \leq n)$, the multiplier $m_{j, k}=a_{j, k}^{(k)} / a_{k, k}^{(k)}$ will be very large. Roundoff error that was produced in the computation of $a_{k, l}^{(k)}$ will be multiplied by the large factor $m_{j, k}$ when computing $a_{j, l}^{(k+1)}$;
- Roundoff error can also be dramatically increased in the back substitution step $x_{k}=\frac{a_{k, n+1}^{(k)}-\sum_{j=k+1}^{n} a_{k, j}^{(k)}}{a_{k, k}^{(k)}}$ when the pivot $a_{k, k}^{(k)}$ is small.

Example. For the linear system

$$
\begin{array}{rlr}
E_{1} & : & 0.003000 x_{1}+59.14 x_{2}
\end{array}=59.17, ~ 5.291 x_{1}-6.130 x_{2}=46.78 .
$$

(Gaussian elimination, four-digit arithmetic rounding).

- $a_{1,1}^{(1)}=0.003000 \Longrightarrow m_{2,1}=5.291 / 0.003000 \approx 1764$.

Apply $\left(E_{2}\right) \longrightarrow\left(E_{2}-m_{2,1} E_{1}\right)$:

$$
\begin{aligned}
& E_{1}: \\
& E_{2}:
\end{aligned} 0.003000 x_{1}+59.14 x_{2} \approx 59.17, ~ 子, ~-104300 x_{2} \approx-104400 .
$$

Back substitution $\Longrightarrow x_{2} \approx 1.001$. However, since the pivot $a_{1,1}$ is small, $x_{1} \approx(59.17-(59.14)(1.001)) / 0.003000=-10.00$ contains the small error 0.001 multiplied by $59.14 / 0.003000 \approx 20000$.

Pivoting Strategy

- Select the largest element $a_{i, k}^{(k)}$ that is below the pivot $a_{k, k}^{(k)}$: if $\max _{j=k, \ldots, n}\left|a_{j, k}^{(k)}\right|=\left|a_{k^{*}, k}^{(k)}\right|$, then swap row k^{*} with row k, and use $a_{k^{*}, k}^{(k)}$ to form the multiplier.

Example. For the linear system $\left\{E_{1}, E_{2}\right\}$ on p.21, since $a_{1,1}<a_{2,1}$, rows 1 and 2 are swapped. This leads to the correct solution $x_{1}=10.00, x_{2}=1.0000$.

Permutation Matrices

- A permutation matrix is just the identity matrix with its rows re-ordered.
- If P is a permutation and A is a matrix, then $P A$ is a row permuted version of A , and $A P$ is a column permuted version of A, e.g.,

$$
P=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], P A=\left[\begin{array}{cccc}
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} \\
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4}
\end{array}\right]
$$

- If P is a permutation, then $P^{-1}=P^{T}$ (P is orthogonal).
- An interchange permutation is obtained by merely swapping two rows in the identity.
- If $P=E_{n} \cdots E_{1}$ and each E_{k} is the identity with rows k and $p(k)$ interchanged, then the vector $p(1: n)$ is a useful vector encoding of P, e.g., $[4,4,3,4]$ is the vector encoding of P on p.23.
- No floating point arithmetic is involved in a permutation operation. However, permutation matrix operations often involve the irregular movement of data, and can represent a significant computational overhead.

Partial Pivoting: the Basic Idea

$$
A=\left[\begin{array}{ccc}
3 & 17 & 10 \\
2 & 4 & -2 \\
6 & 18 & -12
\end{array}\right]
$$

- $(1) \leftrightarrow(3), p[1]=3:$

$$
\begin{gathered}
E_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
2 & 4 & -2 \\
3 & 17 & 10
\end{array}\right], \\
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right], M_{1} E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
0 & -2 & 2 \\
0 & 8 & 16
\end{array}\right] .
\end{gathered}
$$

- $(2) \leftrightarrow(3), p[2]=3:$

$$
E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 4 & 1
\end{array}\right], M_{2} E_{2} M_{1} E_{1} A=\left[\begin{array}{ccc}
6 & 18 & -12 \\
0 & 8 & 16 \\
0 & 0 & 6
\end{array}\right]
$$

- In general, upon completion we emerge with
$M_{n-1} E_{n-1} \cdots M_{1} E_{1} A=U$, an upper triangular matrix.
- To solve the linear system $A x=b$, we
- Compute $y=M_{n-1} E_{n-1} \cdots M_{1} E_{1} b$;
- Solve the upper triangular system $U x=y$.

All the information necessary to do this is contained in the array A and the vector p.

- Cost. $O\left(n^{2}\right)$ comparisons associated with the search for the pivots. The overall algorithm involves $2 n^{3} / 3$ flops.

Scaled Partial Pivoting

- Scale the coefficients before deciding on row exchanges;
- Scale factor: for row $i, S_{i}=\max _{j=1,2, \ldots, n}\left|a_{i, j}\right|$;
- Let $k+1 \leq j \leq n$ be such that

$$
\left|a_{j, k}^{(k)} / S_{j}\right|=\max _{i=k+1, \ldots, n}\left|a_{i, k}^{(k)} / S_{i}\right|
$$

If $\left|a_{j, k}^{(k)} / S_{j}\right|>\left|a_{k, k}^{(k)} / S_{k}\right|$ then rows j and k are exchanged.

Example. For

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2.11 & -4.21 & 0.921 \\
4.01 & 10.2 & -1.12 \\
1.09 & 0.987 & 0.832
\end{array}\right] \\
s_{1}=4.21, \quad s_{2}=10.2, \quad s_{3}=1.09 \\
\frac{\left|a_{1,1}\right|}{s_{1}}=0.501, \quad \frac{\left|a_{2,1}\right|}{s_{2}}=0.393, \quad \frac{\left|a_{3,1}\right|}{s_{3}}=4.21
\end{gathered}
$$

- $(1) \leftrightarrow(3)$

$$
\left[\begin{array}{ccc}
1.09 & 0.987 & 0.832 \\
4.01 & 10.2 & -1.12 \\
2.11 & -4.21 & 0.921
\end{array}\right] .
$$

Compute the multipliers $m_{2,1}, m_{3,1}, \ldots$

- Cost. Additional $O\left(n^{2}\right)$ comparisons, and $O\left(n^{2}\right)$ flops (divisions).

Complete Pivoting

- search all the entries $a_{i, j}, k \leq i, j \leq n$, to find the entry with the largest magnitude. Both row and column interchanges are performed to bring this entry into the pivot position.
- only recommended for systems where accuracy is essential since it requires an additional $O\left(n^{3}\right)$ comparisons.

An Application: Multiple Right Hand Side

Suppose A is nonsingular and n-by- n, and that B is n-by- p.
Consider the problem of finding $X(n$-by- $p)$ so that $A X=B$. If $X=\left[x_{1}, \ldots, x_{p}\right]$ and $B=\left[b_{1}, \ldots, b_{p}\right]$ are column partitions, then

Compute $P A=L U$;
for k from 1 to p do
Solve $L y=P b_{k} ;$
Solve $U x_{k}=y$;
od;
Note that A is factored just once. If $B=I_{n}$, then we emerge with a computed A^{-1}.

Strictly Diagonally Dominant Matrices

Definition. An $n \times n$ matrix A is strictly diagonally dominant (sdd) if $\left(\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|\right)$ holds for each $i=1,2, \ldots, n$.
Theorem. An sdd matrix is nonsingular.
Proof. Suppose there is $x \neq 0$ such that $A x=0$. Then there is $1 \leq k \leq n$ such that $\left|x_{k}\right|=\max _{1 \leq j \leq n}\left|x_{j}\right|>0$. Since x is a solution to $A x=b, a_{k, k} x_{k}+\sum_{j=1, j \neq k}^{n} a_{k, j} x_{j}=0$. Hence,

$$
\left|a_{k, k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k, j}\right|\left|x_{j}\right| /\left|x_{k}\right| \leq \sum_{j=1, j \neq n}^{n}\left|a_{k, j}\right|
$$

A contradiction since A is sdd. Hence, $x=0$ is the only solution to $A x=b$. Equivalently, A is nonsingular.

Theorem. Let A be an sdd matrix. Then Gaussian elimination can be performed on any linear system of the form $A x=b$ to obtain its unique solution without row or column interchanges, and the computations are stable to the growth of roundoff errors.

Proof sketch.

LDM^{T} and LDL^{T} Factorizations

Theorem. If all the leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then there exist unique lower triangular matrices L and M and a unique diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $A=L D M^{T}$.

Proof. By the theorem on p.19, $A=L U$ exists. Set $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{i}=u_{i, i}$ for $1 \leq i \leq n$. Since D is nonsingular and $M^{T}=D^{-1} U$ is unit upper triangular, $A=L U=L D\left(D^{-1} U\right)=L D M^{T}$. Uniqueness follows from the uniqueness of the LU factorization.

Theorem. If $A=L D M^{T}$ is the LDM^{T} factorization of a nonsingular symmetric matrix A, then $L=M$.

Example. For the matrix

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
4 & 5 & 8 \\
7 & 8 & 10
\end{array}\right]
$$

The LU factorization of A is

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & \frac{20}{11} & 1
\end{array}\right], U=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -11 & -20 \\
0 & 0 & -\frac{29}{11}
\end{array}\right]
$$

Set

$$
D=\operatorname{diag}(U)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -11 & 0 \\
0 & 0 & -\frac{29}{11}
\end{array}\right]
$$

Then the matrix M^{T} in the LDM^{T} factorization of A is

$$
\mathrm{M}^{T}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & 1 & \frac{20}{11} \\
0 & 0 & 1
\end{array}\right]
$$

Since A is symmetric, $M^{T}=L^{T}$ and we have the LDL^{T} factorization of A.
Remark. It is possible to compute the matrices L, D, and M directly, instead of computing them via the LU factorization.

Positive Definite Matrices

Definition. A matrix A is positive definite if $x^{T} A x>0$ for every nonzero n-dimensional column vector x.

Theorem. If A is an $n \times n$ positive definite matrix, then
a. A is nonsingular;
b. $a_{i, i}>0$, for each $1 \leq i \leq n$;
c. $\max _{1 \leq k, j \leq n}\left|a_{k, j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i, i}\right|$;
d. $\left(a_{i, j}\right)^{2}<a_{i, i} a_{j, j}$, for each $i \neq j$.

Theorem. A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Example. For

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

- $\operatorname{det} A_{1}=\operatorname{det}[2]=2>0$,
- $\operatorname{det} A_{2}=\operatorname{det}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]=3>0$,
- $\operatorname{det} A_{3}=\operatorname{det} A=4>0$.

Since A is also symmetric, A is positive definite.
Theorem. A symmetric matrix A is positive definite if and only if Gaussian elimination without row exchanges can be performed on the linear system $A x=b$ with all the pivot elements positive. Moreover, in this case, the computations are stable with respect to the growth of roundoff errors.

Theorem. (Cholesky Factorization) If $A \in \mathbb{R}^{n \times n}$ is positive definite, then there exists a unique lower triangular $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that $A=G G^{T}$.

Proof. By the second theorem of p.33, there exists a unit lower triangular L and a diagonal $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $A=L D L^{T}$. Since the d_{k} are positive, the matrix $G=L \operatorname{diag}\left(\sqrt{d}_{1}, \ldots, \sqrt{d}_{n}\right)$ is real lower triangular with positive diagonal entries. It also satisfies $A=G G^{T}$. Uniqueness follows from the uniqueness of LDL^{T} factorization.

Example. For the positive definite matrix A on p.37, the matrices L and D in the LDL^{T} factorization for A are

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right], D=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 / 2 & 0 \\
0 & 0 & 4 / 3
\end{array}\right]
$$

Hence, the matrix $G=\operatorname{Liag}\left(\sqrt{d}_{1}, \sqrt{d}_{2}, \sqrt{d}_{3}\right)$ in the $G G^{T}$ factorization of A is

$$
G=\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
-1 / 2 \sqrt{2} & 1 / 2 \sqrt{6} & 0 \\
0 & -1 / 3 \sqrt{6} & 2 / 3 \sqrt{3}
\end{array}\right]
$$

Tridiagonal Matrices

- Matrices of the form

$$
A=\left(\begin{array}{ccccccc}
a_{1,1} & a_{1,2} & 0 & \cdots & \cdots & \cdots & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & & & & \vdots \\
0 & a_{3,2} & a_{3,3} & a_{3,4} & & & \vdots \\
\vdots & & & & & & \vdots \\
\vdots & & & & & & 0 \\
\vdots & & & & & & \\
0 & \cdots & \cdots & \cdots & 0 & a_{n, n-1} & a_{n, n}
\end{array}\right)
$$

Now suppose A can be factored into the triangular matrices L and U. Suppose that the matrices can be found in the form

$$
L=\left(\begin{array}{ccccc}
l_{1,1} & 0 & \ldots & \ldots & 0 \\
l_{2,1} & l_{2,2} & & & \vdots \\
0 & & & & \vdots \\
\vdots & & & & 0 \\
0 & \ldots & 0 & l_{n, n-1} & l_{n, n}
\end{array}\right), U=\left(\begin{array}{ccccc}
1 & u_{1,2} & 0 & \ldots & 0 \\
0 & 1 & & & \vdots \\
\vdots & & & & 0 \\
\vdots & & & & u_{n-1, n} \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right) .
$$

The zero entries of A are automatically generated by $L U$.

Multiplying $A=L U$, we also find the following conditions:

$$
\begin{align*}
a_{1,1} & =l_{1,1} ; \tag{2}\\
a_{i, i-1} & =l_{i, i-1}, \quad \text { for each } i=2,3, \ldots, n ; \tag{3}\\
a_{i, i} & =l_{i, i-1} u_{i-1, i}+l_{i, i}, \text { for each } i=2,3, \ldots, n ; \tag{4}\\
a_{i, i+1} & =l_{i, i} u_{i, i+1}, \text { for each } i=1,2, \ldots, n-1 . \tag{5}
\end{align*}
$$

This system is straightforward to solve: (2) and (3) give us $l_{1,1}$ and the off-diagonal entries of $L,(4)$ and (5) are used alternately to obtain the remaining entries of L and U.

This solution technique is often referred to as Crout factorization.
Cost. $(5 n-4)$ multiplications/divisions; $(3 n-3)$ additions/subtractions.

