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Overview

• Norms of Vectors and Matrices

• Eigenvalues and Eigenvectors

• Iterative Techniques for Solving Linear Systems
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Iterative Techniques in Matrix Algebra

• We are interested in solving large linear systems Ax = b.

• Suppose A is sparse, i.e., it has a high percentage of zeros. We

would like to take advantage of this sparse structure to reduce the

amount of computational work required.

• Gaussian elimination is often unable to take advantage of the

sparse structure. For this reason, we consider iterative techniques.
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Vector Norm

• To estimate how well a particular iterate approximates the true

solution, we need some measurement of distance. This motivates

the notion of a norm.

Definition. A vector norm on � n is a function, ‖ · ‖, from � n into

� with the following properties:

(i) ‖ x ‖≥ 0 for all x ∈ � n;

(ii) ‖ x ‖= 0 if and only if x = 0;

(iii) ‖ αx ‖= |α| ‖ x ‖ for all α ∈ � and x ∈ � n;

(iv) ‖ x + y ‖≤‖ x ‖ + ‖ y ‖ for all x, y ∈ � n.

Definition. A unit vector with respect to the norm ‖ · ‖ is a vector

x that satisfies ‖ x ‖= 1.
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Euclidean Norm and Max Norm

Definition. The l2 or Euclidean norm of a vector x ∈ � n is given by

‖ x ‖2=

(
n∑

i=1

x2
i

)1/2

.

Note that this represents the usual notion of distance.

Definition. The infinity or max norm of a vector x ∈ � n is given by

‖ x ‖∞= max
1≤i≤n

|xi|.

Example. For x = [−1, 1,−2]T ,

‖ x ‖2 =
√

(−1)2 + (1)2 + (−2)2 =
√

6,

‖ x ‖∞ = max {| − 1|, |1|, | − 2|} = 2.
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• It is straightforward to check that the max norm satisfies the

definition of a norm. Checking that the l2 norm satisfies

‖ x + y ‖2≤‖ x ‖2 + ‖ y ‖2

requires

Cauchy-Schwarz Inequality. For each x, y ∈ � n,

n∑

i=1

|xiyi| ≤
(

n∑

i=1

x2
i

)1/2

︸ ︷︷ ︸

‖x‖2

(
n∑

i=1

y2
i

)1/2

︸ ︷︷ ︸

‖y‖2

.
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Exercise. Prove that ‖ x + y ‖2 ≤ ‖ x ‖2 + ‖ y ‖2.

‖ x + y ‖2
2 =

n∑

i=1

(xi + yi)
2

=

n∑

i=1

x2
i + 2

n∑

i=1

xiyi +

n∑

i=1

y2
i

≤
n∑

i=1

x2
i + 2 ‖ x ‖2‖ y ‖2 +

n∑

i=1

y2
i

= (‖ x ‖2 + ‖ y ‖2)
2
.
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Distance between Two Vectors

Definition. For x, y ∈ � n,

• the l2 distance between x and y is defined by

‖ x − y ‖2=

(
n∑

i=1

(xi − yi)
2

)1/2

, and

• the l∞ distance between x and y is defined by

‖ x − y ‖∞= max
1≤i≤n

|xi − yi|.

Example. For xE = [1, 1, 1]T , xA = [1.2001, 0.99991, 0.92538]T ,
using five-digit rounding arithmetic:

‖ xE − xA ‖∞= max {|1 − 1.2001|, |1 − 0.99991|, |1 − 0.92538|} = 0.2001,

‖ xE − xA ‖2= � (1 − 1.2001)2 + (1 − 0.99991)2 + (1 − 0.92538)2 �

1/2
= 0.21356.
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Convergence of a Sequence of Vectors

Definition. Let {xn}∞n=1 be an infinite sequence of real or complex

numbers. The sequence {xn}∞n=1 has the limit x (converges to x) if,

for any ε > 0, there exists a positive integer N(ε) such that

|xn − x| < ε for all n > N(ε).

The notation limn→∞ xn = x, or xn → x as x → ∞, means that the

sequence {xn}∞n=1 converges to x.

Definition. A sequence
{
x(k)

}∞

k=1
of vectors in � n is said to

converge to x with respect to the norm ‖ · ‖ if, given any ε > 0,

there exists an integer N(ε) such that

‖ x(k) − x ‖< ε for all k ≥ N(ε).
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• Checking convergence in the max norm is facilitated by the

following theorem:

Theorem. The sequence of vectors
{
x(k)

}∞

k=1
converges to x in � n

with respect to ‖ · ‖∞ if and only if limk→∞ x
(k)
i = xi for each i.

Proof.

(=⇒) ∀ε > 0, ∃N(ε) s.t. ∀k ≥ N(ε):

max1≤i≤n |x(k)
i − xi| =‖ x(k) − x ‖∞< ε

=⇒ |x(k)
i − xi| < ε for each i

=⇒ limk→∞ x
(k)
i = xi for each i.

(⇐=) ∀ε > 0, ∃Ni(ε) s.t. |x(k)
i − xi| < ε, ∀k ≥ Ni(ε), 1 ≤ i ≤ n. Let

N(ε) = maxi Ni(ε). If k ≥ N(ε), then |x(k)
i − xi| < ε for each i and

max1≤i≤n |x(k)
i − xi| =‖ x(k) − x ‖∞< ε.
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Example. Prove that

x(k) =

(
1

k
, 1 + e1−k, − 2

k2

)

is convergent w.r.t. the infinity norm, and find the limit of the

sequence.

lim
k→∞

1

k
= 0, lim

k→∞
1 + e1−k = 1, lim

k→∞
− 2

k2
= 0.

Hence, x(k) converges to [0, 1, 0]T w.r.t. the infinity norm.

• Convergence w.r.t. the l2 norm is complicated to check. Instead,

we will use the following theorem:
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Theorem. For each x ∈ � n, ‖ x ‖∞≤‖ x ‖2≤
√

n ‖ x ‖∞ .

Proof. Let xj be such that s.t. ‖ x ‖∞= max1≤i≤n |xi| = |xj |. Then

‖ x ‖2
∞ = |xj |2 = x2

j≤
n∑

i=1

x2
i≤

n∑

i=1

x2
j = nx2

j = n ‖ x ‖2
∞.

Example. Show that x(k) =
(
1/k, 1 + e1−k, −2/k2

)
converges to

x = (0, 1, 0)T w.r.t. the l2 norm.

From the example on p.11, limk→∞ ‖ x(k) − x ‖∞= 0. Hence,

0 ≤‖ x(k) − x ‖2≤
√

3 ‖ x(k) − x ‖∞= 0. This implies
{
x(k)

}

converges to x w.r.t. the l2 norm.

• Indeed, it can be shown that all norms on � n are equivalent with

respect to convergence, i.e.,

If ‖ · ‖a and ‖ · ‖b are any two norms on � n, and
{
x(k)

}∞

k=1
has the

limit x w.r.t. ‖ · ‖a then
{
x(k)

}∞

k=1
also has the limit x w.r.t. ‖ · ‖b.
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Matrix Norm

Definition. A matrix norm on the set of all n × n matrices is a

real-valued function ‖ · ‖ defined on this set satisfying for all n × n

matrices A and B and all real numbers α:

(i) ‖ A ‖≥ 0;

(ii) ‖ A ‖= 0 if and only if A = 0;

(iii) ‖ αA ‖= |α| ‖ A ‖;

(iv) ‖ A + B ‖ ≤ ‖ A ‖ + ‖ B ‖;

(v) ‖ AB ‖ ≤ ‖ A ‖ · ‖ B ‖.
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Definition. A distance between n × n matrices A and B w.r.t. a

matrix norm ‖ · ‖ is ‖ A − B ‖.
Theorem. If ‖ · ‖ is a vector norm on � n, then

‖ A ‖= max‖x‖=1 ‖ Ax ‖ is a matrix norm.

This is called the natural or induced matrix norm associated with

the vector norm.

The following result gives a bound on the value of ‖ Ax ‖:
Theorem. For any vector x 6= 0, matrix A, and any natural norm

‖ · ‖, we have ‖ Ax ‖≤‖ A ‖ · ‖ x ‖.
Proof. For any vector z 6= 0, x = z/ ‖ z ‖ is a unit vector. Hence,

‖ A ‖= max
‖x‖=1

‖ Ax ‖= max
z 6=0

‖ A

(
z

‖ z ‖

)

‖= max
z 6=0

‖ Az ‖
‖ z ‖ .
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Computing the infinity norm of a matrix is straightforward:

Theorem. If A = (ai,j) is an n × n matrix, then

‖ A ‖∞= max
1≤i≤n

n∑

j=1

|ai,j |.

Example. Find the infinity norm of A =





2 −1 0

−1 2 −1

0 −1 2



.

n

j=1

|a1,j | = |2| + | − 1| + |0| = 3,

n

j=1

|a2,j | = | − 1| + |2| + | − 1| = 4,

n

j=1

|a3,j | = |0| + | − 1| + |2| = 3.

Hence, ‖ A ‖∞= max {3, 4, 3} = 4.
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Eigenvalues and Eigenvectors

Definition. If A is an n × n matrix, then the polynomial p defined

by p(λ) = det(A − λ I) is called the characteristic polynomial of A.

It can be shown that p is an n-th degree polynomial in λ.

Example.

C =

� ����
�

2 1 0

1 2 0

0 0 3

� ����
�

	 
� �

A

−λ

� ����
�

1 0 0

0 1 0

0 0 1
� ����

�

	 
� �

I

=

� ����
�

2 − λ 1 0

1 2 − λ 0

0 0 3 − λ

� ����
�

.

Hence, p(λ) = det(C) = −(λ − 3)2 (λ − 1).
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Definition. If p is the characteristic polynomial of an n × n matrix

A, then the zeros of p are called eigenvalues, or characteristic

values of A.

If λ is an eigenvalue of A and x 6= 0 have the property that

(A − λ I)x = 0, then x is called an eigenvector, or characteristic

vector of A corresponding to the eigenvalue λ.

Example. For the matrix A in the example on p.17,

p(λ) = −(λ − 3)2 (λ − 1). Hence, the eigenvalues are λ1 = λ2 = 3,

and λ3 = 1.

To determine eigenvectors associated with the eigenvalue λ = 3, we
solve the homogeneous linear system

� ����
�

2 − 3 1 0

1 2 − 3 0

0 0 3 − 3

� ����
�

� ����
�

x1

x2

x3

� ����
�

=

� ����
�

0

0

0

� ����
�

.
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This implies that x1 = x2 and that x3 is arbitrary. Two linearly

independent choices for the eigenvectors associated with the double

eigenvalue λ = 3 are

x1 = [1, 1, 0]T , x2 = [1, 1, 1]T .

The eigenvector associated with the eigenvalue λ = 1 must satisfy

� ����
�

2 − 1 1 0

1 2 − 1 0

0 0 3 − 1

� ����
�

� ����
�

x1

x2

x3

� ����
�

=

� ����
�

0

0

0

� ����
�

.

This implies that we must have x1 = −x2 and that x3 = 0. One

choice for the eigenvector associated with the eigenvalue λ = 1 is

x3 = [1,−1, 0]T .
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Notice that if x is an eigenvector associated with the eigenvalue λ,

then Ax = λ x. So the matrix A takes the vector x into a scalar

multiple of itself.

Geometrically, if λ is real, A has the effect of stretching (or

shrinking) x by a factor of λ.

In order to be able to compute the l2 norm of a matrix, we need

the following

Definition. The spectral radius ρ(A) of an n× n matrix A is defined

by ρ(A) = max |λ| where λ is an eigenvalue of A.

Example. For the matrix A in the example on p.17,

ρ(A) = max{|3|, |3|, |1|} = 3.
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Theorem. If A is an n × n matrix then

(i) ‖ A ‖2=
(
ρ(AT A)

)1/2
;

(ii) ρ(A) ≤‖ A ‖ for any natural norm ‖ · ‖.

Proof. (ii) Let λ be any eigenvalue of A with the corresponding

eigenvector x. W.l.o.g. (why?) we can assume that ‖ x ‖= 1. Since

Ax = λx,

|λ| = |λ| ‖ x ‖=‖ λx ‖=‖ Ax ‖≤‖ A ‖‖ x ‖=‖ A ‖ .

Hence, ρ(A) = max |λ| ≤‖ A ‖.
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Example. For the matrix A in the example on p.17,

AT A =
� ����

�

2 1 0

1 2 0

0 0 3

� ����
�

� ����
�

2 1 0

1 2 0

0 0 3

� ����
�

=

� ����
�

5 4 0

4 5 0

0 0 9

� ����
�

.

The characteristic polynomial p(λ) of AT A is

− (λ − 1) (λ − 9)2

which admits λ = 1 and λ = 9 as its roots. Hence.

‖ A ‖2=
√

ρ (AT A) =
√

max{1, 9} = 3.
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When we use iterative matrix technique, we will need to know

when powers of a matrix become small.

Definition. We call an n × n matrix A convergent if

limk→∞

(
Ak
)

i,j
= 0 for each i, j.

Example. For A =
� �

�
1/2 0

1/4 1/2

� �
�

,

A2 =

� �
�

1/4 0

1/4 1/4

� �
�

, A3 =
� �

�
1/8 0

3/16 1/8

� �
�

, A4 =

� �
�

1/16 0

1/8 1/16

� �
�

,

and in general, Ak =

� �
�

(1/2)k 0

k
2k+1 (1/2)k

� �
�

. Since limk→∞(1/2)k = 0,

and limk→∞ k/2(k+1) = 0, A is a convergent matrix.
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Note that the convergent matrix A in the last example has

ρ(A) = 1/2 < 1, since 1/2 is the only eigenvalue of A. This

generalizes:

Theorem. The following statements are equivalent.

(i) A is a convergent matrix;

(ii) ρ(A) < 1;

(iii) limn→∞ Anx = 0 for every x;

(iv) limn→∞ ‖ An ‖= 0 for all natural norms.
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Iterative Techniques

• In problems where the matrix A is sparse, iterative techniques are

often used to solve the system Ax = b since they preserve the

sparse structure of the matrix.

• Iterative techniques convert the system Ax = b into an equivalent

system of the form x = Tx + c where T ∈ � n×n is a fixed matrix,

and c ∈ � n is a fixed vector.

• An initial vector x(0) is selected, and then a sequence of

approximate solution vectors is generated:

x(k) = Tx(k−1) + c.

• Iterative techniques are rarely used in very small systems. In

these cases, iterative methods may be slower since they require

several iterations to obtain the desired accuracy.
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Iterative Techniques: General Approach

• Split the matrix A:

Ax = b

(M + (A − M))x = b

Mx = b + (M − A)x

x = (I − M−1A)x + M−1b.

Iteration becomes

x(k+1) = (I − M−1A)
︸ ︷︷ ︸

T

x(k) + M−1b
︸ ︷︷ ︸

c

.

Problem. How to choose M ?
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Jacobi Iterative Method

M = D = diag(A) =

 ����
�

a1,1 0 . . . 0

0 a2,2 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . an,n

� ����
�

To construct the matrix T and vector c, let

L =

� ���������
�

0 0 . . . 0 0

−a2,1 0 . . . 0 0

−a3,1 −a3,2 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−an,1 −an,2 . . . −an,n−1 0

� ���������
�

, U =

� ��������
�

0 −a1,2 −a1,3 . . . −a1,n
0 0 −a2,3 . . . −a2,n
0 0 0 . . . −a3,n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 0

� ��������
�

.
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Then A = D − L − U .

Ax = b

(D − L − U)x = b

Dx = (L + U)x + b

x = D−1(L + U)x + D−1b,

which results in the iteration

x(k+1) = D−1(L + U)
︸ ︷︷ ︸

T

x(k) + D−1b
︸ ︷︷ ︸

c

.
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Jacobi Iterative Method: an Example

Solve

� ��������
�

10 −1 2 0

−1 11 −1 3

2 −1 10 −1

0 3 −1 8

� ��������
�

� ��������
�

x1

x2

x3

x4

� ��������
�

=

� ��������
�

6

25

−11

15

� ��������
�

by Jacobi’s method.

D =

� ��������
�

10 0 0 0

0 11 0 0

0 0 10 0

0 0 0 8

� ��������
�

=⇒ D−1 =

� ��������
�

1/10 0 0 0

0 1/11 0 0

0 0 1/10 0

0 0 0 1/8

� ��������
�

,
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L =
� ��������

�

0 0 0 0

1 0 0 0

−2 1 0 0

0 −3 1 0

� ��������
�

, U =

� ��������
�

0 1 −2 0

0 0 1 −3

0 0 0 1

0 0 0 0

� ��������
�

.

Hence,

T = D−1(L+U) =

� ��������
�

0 1/10 −1/5 0

1/11 0 1/11 −3/11

−1/5 1/10 0 1/10

0 −3/8 1/8 0

� ��������
�

, c = D−1b =

� ��������
�

3/5

25

11

− 11

10

15

8

� ��������
�

.
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Take x(0) = [0, 0, 0, 0]T . Then

x(1) = Tx(0) + c = c = [0.6000, 2.2727,−1.1000, 1.8750]T ,

x(2) = Tx(1) + c = [1.0473, 1.7159,−0.8052, 0.8852]T ,

...
...

...

x(9) = Tx(8) + c = [0.9997, 2.0004,−1.0004, 1.0006]T ,

x(10) = Tx(9) + c = [1.1001, 1.9998,−0.9998, 0.9998]T .

The decision to stop after ten iterations was based on the criterion

‖ x(10) − x(9) ‖∞
‖ x(10) ‖∞

=
8.0 × 10−4

1.9998
< 10−3.
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Comments on Jacobi’s Method

x(k+1) = D−1(L + U)
︸ ︷︷ ︸

T

x(k) + D−1b
︸ ︷︷ ︸

c

.

1. The algorithm requires that ai,i 6= 0 for each i. If one of the

ai,i = 0, and the system is nonsingular, then a reordering of the

equations can be performed so that no ai,i = 0;

2. To accelerate convergence, the equations should be arranged so

that ai,i is as large as possible;

3. A possible stopping criterion is to iterate until

‖ x(k) − x(k−1) ‖
‖ x(k) ‖ < ε.
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Gauss-Seidel Iterative Method

• Write out Jacobi’s method x(k+1) = D−1(L + U)
︸ ︷︷ ︸

T

x(k) + D−1b
︸ ︷︷ ︸

c

, we

find that

x
(k+1)
i =

∑n
j=1,j 6=i

(

−ai,jx
(k)
j

)

+ bi

ai,i
for 1 ≤ i ≤ n.

Notice that to compute x
(k+1)
i , the components x

(k)
i are used.

However, for i > 1, x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 have already been

computed, and are likely better approximations to the actual

solutions than x
(k)
1 , x

(k)
2 , x

(k)
i−1. Hence, it seems reasonable to

compute with these most recently computed values, i.e.,

x
(k+1)
i =

−∑i−1
j=1

(

ai,jx
(k+1)
j

)

−∑n
j=i+1

(

ai,jx
(k)
j

)

+ bi

ai,i
.
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Matrix Formulation. Set M = D − L.

Ax = b

(D − L − U)x = b

(D − L)x = Ux + b

x = (D − L)−1Ux + (D − L)−1b.

Hence, iteration becomes

x(k+1) = (D − L)−1U
︸ ︷︷ ︸

Tg

x(k) + (D − L)−1b
︸ ︷︷ ︸

cg

.

Notice that (D − L) is lower triangular. It is invertible if and only

if ai,i 6= 0.
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Gauss-Seidel Method: an Example

For the linear system on p.28,

Tg =
�����������

�

0 1/10 −1/5 0

0 1
110

4
55

−3/11

0 −

21
1100

13
275

4
55

0 −

51
8800

−

47
2200

49
440

� ����������
�

, cg =

�����������
�

3/5

128
55

−

543
550

3867
4400

� ����������
�

.

Take x(0) = [0, 0, 0, 0]T . Then

x(1) = Tgx(0) + cg = cg = [0.6000, 2.3272,−0.9873, 0.8789]T ,

. . . . . . . . .

x(4) = Tgx(3) + cg = [1.0009, 2.0003,−1.0003, 0.9999]T ,

x
(5)

= Tgx
(4)

+ cg = [1.1001, 2.0000,−1.0000, 1.0000]
T

.

Since
‖ x(5) − x(4) ‖∞

‖ x(5) ‖∞
=

0.0008

2.0000
= 4 × 10−4,

x(5) is accepted as a reasonable approximation to the solution.
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Convergence of General Iteration Techniques

x(k) = Tx(k−1) + c

Lemma. If the spectral radius ρ(T ) satisfies ρ(T ) < 1 then

(I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · · =
∞∑

j=0

T j .

Theorem. For any x(0) ∈ � n, the sequence {x(k)}∞k=0 defined by

x(k) = Tx(k−1) + c, for each k ≥ 1,

converges to the unique solution x = Tx + c if and only if ρ(T ) < 1.
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Proof.

(⇐=) Assume that ρ(T ) < 1. Then

x(k) = Tx(k−1) + c

= T (Tx(k−2) + c) + c = T 2x(k−2) + (T + I)c

· · ·
= T kx(0) + (T k−1 + · · · + T + I)c.

Since ρ(T ) < 1, the matrix T is convergent, and by the theorem

(iv) on p.23, limk→∞ T kx(0) = 0. The Lemma on p.35 implies that

lim
k→∞

x(k) = lim
k→∞

T kx(0) +





∞∑

j=0

T j



 c = (I − T )−1c.

Hence, the sequence {x(k)}∞k=0 converges to the vector

x = (I − T )−1c and x = Tx + c.
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(=⇒) We show that for any z ∈ � n, limk→∞ T kz = 0. By the

theorem on p.23, this is equivalent to ρ(T ) < 1.

Let z be an arbitrary vector, and x be the unique solution to

x = Tx + c. Define

x(k) =







x − z if k = 0,

Tx(k−1) + c if k ≥ 1.

Then {x(k)}∞k=0 converges to x. Also,

x − x(k) = (Tx + c) − (Tx(k−1) + c) = T (x − x(k−1))

= T 2(x − x(k−2)) = · · · = T k(x − x(0)) = T kz.

Hence, limk→∞ T kz = 0. Since z ∈ � n is arbitrary, T is a

convergent matrix (p.23 (i)), and that ρ(T ) < 1 (p.23 (ii)).
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This allows us to derive some related results on the rates of

convergence.

Corollary. If ‖ T ‖< 1 for any natural matrix norm and c is a given

vector, then the sequence {x(k)}∞k=0 defined by x(k) = Tx(k−1) + c

converges, for any x(0) ∈ � n, to a vector x ∈ � n, and the following

error bounds hold:

(i) ‖ x − x(k) ‖ ≤ ‖ T ‖k‖ x(0) − x ‖;

(ii) ‖ x − x(k) ‖ ≤ ‖T‖k

1−‖T‖ ‖ x(1) − x(0) ‖.

Recall that ρ(A) ≤‖ A ‖ for any natural norm (the theorem on

p.20). In practice

‖ x − x(k) ‖≈ ρ(T )k ‖ x(0) − x ‖ .

Hence, it is desirable to have ρ(T ) as small as possible.
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Some results for Jacobi and Gauss-Seidel methods.

Theorem. If A is strictly diagonally dominant, then for any choice

of x(0), both the Jacobi and Gauss-Seidel methods give sequence

{x(k)}∞k=0 that converge to the unique solution Ax = b.

Remark. No general results exist to tell which of the two methods

will converge more quickly.
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The following result applies in a variety of examples.

Theorem. (Stein-Rosenberg)

If ai,j ≤ 0, for each i 6= j, and ai,i > 0, for each i = 1, 2, . . . , n, then

one and only one of the following statements holds:

a. 0 ≤ ρ(Tg) < ρ(Tj) < 1;

b. 1 ≤ ρ(Tj) < ρ(Tg);

c. ρ(Tj) = ρ(Tg) = 0;

d. ρ(Tj) = ρ(Tg) = 1.

Note. If one method converges, both do and Gauss-Seidel method

converges faster. Otherwise, if one method diverges, both do. The

divergence for Gauss-Seidel is more pronounced.

Warning. This result only holds when ai,j ≤ 0 for i 6= j, and

ai,i > 0.
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Successive Over Relaxation (SOR)

• Suppose x̃(k+1) is the iterate from Gauss-Seidel using x(k). The

(k + 1)-th iterate of SOR is defined by

x(k+1) = w x̃(k+1) + (1 − w)x(k)

where 1 < w < 2.

• Matrix notation.

x(k) = Twx(k−1) + cw, where

Tw = (D − wL)−1((1 − w)D + wU), cw = w(D − wL)−1b.
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Example. Solve

� ����
�

4 3 0

3 4 −1

0 −1 4

� ����
�

� ����
�

x1

x2

x3

� ����
�

=

� ����
�

24

30

−24

� ����
�

.

Tw = (D − wL)−1((1 − w)D + wU)

=

� ����
�

1 − w −3/4 w 0

−3/16 w (4 − 4 w) 9

16
w2 + 1 − w 1/4 w

− 3

64
w2 (4 − 4 w) 9

64
w3 + 1/16 w (4 − 4 w) 1 + 1/16 w2 − w

� ����
�

,

cw = w(D − wL)−1b =









6 w

−9/2 w2 + 15/2 w

− 9
8 w3 + 15

8 w2 − 6 w









.
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Take x(0) = [1, 1, 1]T . Then for w = 1.25,

x(1) = Twx(0) + cw = [6.312500, 3.5195313,−6.6501465]T ,

x(2) = Twx(2) + cw = [2.6223145, 3.9585266,−4.6004238]T ,

...
...

...

x(6) = Twx(5) + cw = [2.9963276, 4.0029250,−4.9982822]T ,

x(7) = Twx(6) + cw = [3.0000498, 4.0002586,−5.0003486]T .

Note that the exact solution is [3, 4,−5]T .
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It can be difficult to select w optimally. Indeed, the answer to this

question is not known for general n × n linear systems. However,

we do have the following results:

Theorem. (Kahan)

If ai,i 6= 0, for each i = 1, 2, . . . , n, then ρ(Tw) ≥ |w − 1|. This

implies that the SOR method can converge only if 0 < w < 2.

Theorem. (Ostrowski-Reich)

If A is positive definite matrix, and 0 < w < 2, then the SOR

method converges for any choice of initial approximate vector x(0).

Theorem. If A is positive definite and tridiagonal, then

ρ(Tg) = (ρ(Tj))
2

< 1, and the optimal choice of w for the SOR

method is

w =
2

1 +
√

1 − (ρ(Tj))
2
.

With this choice of w, we have ρ(Tw) = w − 1.
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