Iterative Techniques in Matrix Algebra

Simon Fraser University - Surrey Campus
MACM 316 - Spring 2005
Instructor: Ha Le

Overview

- Norms of Vectors and Matrices
- Eigenvalues and Eigenvectors
- Iterative Techniques for Solving Linear Systems

Iterative Techniques in Matrix Algebra

- We are interested in solving large linear systems $A x=b$.
- Suppose A is sparse, i.e., it has a high percentage of zeros. We would like to take advantage of this sparse structure to reduce the amount of computational work required.
- Gaussian elimination is often unable to take advantage of the sparse structure. For this reason, we consider iterative techniques.

Vector Norm

- To estimate how well a particular iterate approximates the true solution, we need some measurement of distance. This motivates the notion of a norm.

Definition. A vector norm on \mathbb{R}^{n} is a function, $\|\cdot\|$, from \mathbb{R}^{n} into \mathbb{R} with the following properties:
(i) $\|x\| \geq 0$ for all $x \in \mathbb{R}^{n}$;
(ii) $\|x\|=0$ if and only if $x=\mathbf{0}$;
(iii) $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$;
(iv) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbb{R}^{n}$.

Definition. A unit vector with respect to the norm $\|\cdot\|$ is a vector x that satisfies $\|x\|=1$.

Euclidean Norm and Max Norm

Definition. The l_{2} or Euclidean norm of a vector $x \in \mathbb{R}^{n}$ is given by

$$
\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

Note that this represents the usual notion of distance.
Definition. The infinity or max norm of a vector $x \in \mathbb{R}^{n}$ is given by

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

Example. For $x=[-1,1,-2]^{T}$,

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{(-1)^{2}+(1)^{2}+(-2)^{2}}=\sqrt{6}, \\
\|x\|_{\infty} & =\max \{|-1|,|1|,|-2|\}=2 .
\end{aligned}
$$

- It is straightforward to check that the max norm satisfies the definition of a norm. Checking that the l_{2} norm satisfies

$$
\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2}
$$

requires
Cauchy-Schwarz Inequality. For each $x, y \in \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq \underbrace{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}}_{\|x\|_{2}} \underbrace{\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}}_{\|y\|_{2}}
$$

Exercise. Prove that $\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2}$.

$$
\begin{aligned}
\|x+y\|_{2}^{2} & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& \leq \sum_{i=1}^{n} x_{i}^{2}+2\|x\|_{2}\|y\|_{2}+\sum_{i=1}^{n} y_{i}^{2} \\
& =\left(\|x\|_{2}+\|y\|_{2}\right)^{2}
\end{aligned}
$$

Distance between Two Vectors

Definition. For $x, y \in \mathbb{R}^{n}$,

- the l_{2} distance between x and y is defined by

$$
\|x-y\|_{2}=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}, \text { and }
$$

- the l_{∞} distance between x and y is defined by

$$
\|x-y\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

Example. For $x_{E}=[1,1,1]^{T}, x_{A}=[1.2001,0.99991,0.92538]^{T}$, using five-digit rounding arithmetic:

$$
\begin{gathered}
\left\|x_{E}-x_{A}\right\|_{\infty}=\max \{|1-1.2001|,|1-0.99991|,|1-0.92538|\}=0.2001 \\
\left\|x_{E}-x_{A}\right\|_{2}=\left((1-1.2001)^{2}+(1-0.99991)^{2}+(1-0.92538)^{2}\right)^{1 / 2}=0.21356
\end{gathered}
$$

Convergence of a Sequence of Vectors

Definition. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real or complex numbers. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has the limit x (converges to x) if, for any $\epsilon>0$, there exists a positive integer $N(\epsilon)$ such that

$$
\left|x_{n}-x\right|<\epsilon \quad \text { for all } n>N(\epsilon)
$$

The notation $\lim _{n \rightarrow \infty} x_{n}=x$, or $x_{n} \rightarrow x$ as $x \rightarrow \infty$, means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.
Definition. A sequence $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^{n} is said to converge to x with respect to the norm $\|\cdot\|$ if, given any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that

$$
\left\|x^{(k)}-x\right\|<\epsilon \quad \text { for all } k \geq N(\epsilon)
$$

- Checking convergence in the max norm is facilitated by the following theorem:
Theorem. The sequence of vectors $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ converges to x in \mathbb{R}^{n} with respect to $\|\cdot\|_{\infty}$ if and only if $\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}$ for each i. Proof.

$$
(\Longrightarrow) \forall \epsilon>0, \exists N(\epsilon) \text { s.t. } \forall k \geq N(\epsilon):
$$

$$
\begin{aligned}
& \max _{1 \leq i \leq n}\left|x_{i}^{(k)}-x_{i}\right|=\left\|x^{(k)}-x\right\|_{\infty}<\epsilon \\
\Longrightarrow & \left|x_{i}^{(k)}-x_{i}\right|<\epsilon \text { for each } i \\
\Longrightarrow & \lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i} \text { for each } i .
\end{aligned}
$$

$(\Longleftarrow) \forall \epsilon>0, \exists N_{i}(\epsilon)$ s.t. $\left|x_{i}^{(k)}-x_{i}\right|<\epsilon, \forall k \geq N_{i}(\epsilon), 1 \leq i \leq n$. Let $N(\epsilon)=\max _{i} N_{i}(\epsilon)$. If $k \geq N(\epsilon)$, then $\left|x_{i}^{(k)}-x_{i}\right|<\epsilon$ for each i and $\max _{1 \leq i \leq n}\left|x_{i}^{(k)}-x_{i}\right|=\left\|x^{(k)}-x\right\|_{\infty}<\epsilon$.

Example. Prove that

$$
x^{(k)}=\left(\frac{1}{k}, 1+e^{1-k},-\frac{2}{k^{2}}\right)
$$

is convergent w.r.t. the infinity norm, and find the limit of the sequence.

$$
\lim _{k \rightarrow \infty} \frac{1}{k}=0, \lim _{k \rightarrow \infty} 1+e^{1-k}=1, \lim _{k \rightarrow \infty}-\frac{2}{k^{2}}=0
$$

Hence, $x^{(k)}$ converges to $[0,1,0]^{T}$ w.r.t. the infinity norm.

- Convergence w.r.t. the l_{2} norm is complicated to check. Instead, we will use the following theorem:

Theorem. For each $x \in \mathbb{R}^{n},\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$.
Proof. Let x_{j} be such that s.t. $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|=\left|x_{j}\right|$. Then

$$
\|x\|_{\infty}^{2}=\left|x_{j}\right|^{2}=x_{j}^{2} \leq \sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{j}^{2}=n x_{j}^{2}=n\|x\|_{\infty}^{2}
$$

Example. Show that $x^{(k)}=\left(1 / k, 1+e^{1-k},-2 / k^{2}\right)$ converges to $x=(0,1,0)^{T}$ w.r.t. the l_{2} norm.

From the example on p.11, $\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\infty}=0$. Hence, $0 \leq\left\|x^{(k)}-x\right\|_{2} \leq \sqrt{3}\left\|x^{(k)}-x\right\|_{\infty}=0$. This implies $\left\{x^{(k)}\right\}$ converges to x w.r.t. the l_{2} norm.

- Indeed, it can be shown that all norms on \mathbb{R}^{n} are equivalent with respect to convergence, i.e.,
If $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are any two norms on \mathbb{R}^{n}, and $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ has the limit x w.r.t. $\|\cdot\|_{a}$ then $\left\{x^{(k)}\right\}_{k=1}^{\infty}$ also has the limit x w.r.t. $\|\cdot\|_{b}$.

Matrix Norm

Definition. A matrix norm on the set of all $n \times n$ matrices is a real-valued function $\|\cdot\|$ defined on this set satisfying for all $n \times n$ matrices A and B and all real numbers α :
(i) $\|A\| \geq 0$;
(ii) $\|A\|=0$ if and only if $A=\mathbf{0}$;
(iii) $\|\alpha A\|=|\alpha|\|A\|$;
(iv) $\|A+B\| \leq\|A\|+\|B\|$;
(v) $\|A B\| \leq\|A\| \cdot\|B\|$.

Definition. A distance between $n \times n$ matrices A and B w.r.t. a matrix norm $\|\cdot\|$ is $\|A-B\|$.
Theorem. If $\|\cdot\|$ is a vector norm on \mathbb{R}^{n}, then
$\|A\|=\max _{\|x\|=1}\|A x\|$ is a matrix norm.
This is called the natural or induced matrix norm associated with the vector norm.

The following result gives a bound on the value of $\|A x\|$:
Theorem. For any vector $x \neq 0$, matrix A, and any natural norm $\|\cdot\|$, we have $\|A x\| \leq\|A\| \cdot\|x\|$.

Proof. For any vector $z \neq 0, x=z /\|z\|$ is a unit vector. Hence,

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{z \neq 0}\left\|A\left(\frac{z}{\|z\|}\right)\right\|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|}
$$

Computing the infinity norm of a matrix is straightforward:
Theorem. If $A=\left(a_{i, j}\right)$ is an $n \times n$ matrix, then

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i, j}\right|
$$

Example. Find the infinity norm of $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.

$$
\begin{aligned}
& \sum_{j=1}^{n}\left|a_{1, j}\right|=|2|+|-1|+|0|=3, \\
& \sum_{j=1}^{n}\left|a_{2, j}\right|=|-1|+|2|+|-1|=4, \\
& \sum_{j=1}^{n}\left|a_{3, j}\right|=|0|+|-1|+|2|=3 .
\end{aligned}
$$

Hence, $\|A\|_{\infty}=\max \{3,4,3\}=4$.

Eigenvalues and Eigenvectors

Definition. If A is an $n \times n$ matrix, then the polynomial p defined by $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of A.

It can be shown that p is an n-th degree polynomial in λ.
Example.

$$
C=\underbrace{\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]}_{A}-\lambda \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{I}=\left[\begin{array}{ccc}
2-\lambda & 1 & 0 \\
1 & 2-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right]
$$

Hence, $p(\lambda)=\operatorname{det}(C)=-(\lambda-3)^{2}(\lambda-1)$.

Definition. If p is the characteristic polynomial of an $n \times n$ matrix A, then the zeros of p are called eigenvalues, or characteristic values of A.

If λ is an eigenvalue of A and $x \neq 0$ have the property that $(A-\lambda I) x=0$, then x is called an eigenvector, or characteristic vector of A corresponding to the eigenvalue λ.
Example. For the matrix A in the example on p.17, $p(\lambda)=-(\lambda-3)^{2}(\lambda-1)$. Hence, the eigenvalues are $\lambda_{1}=\lambda_{2}=3$, and $\lambda_{3}=1$.
To determine eigenvectors associated with the eigenvalue $\lambda=3$, we solve the homogeneous linear system

$$
\left[\begin{array}{ccc}
2-3 & 1 & 0 \\
1 & 2-3 & 0 \\
0 & 0 & 3-3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This implies that $x_{1}=x_{2}$ and that x_{3} is arbitrary. Two linearly independent choices for the eigenvectors associated with the double eigenvalue $\lambda=3$ are

$$
x_{1}=[1,1,0]^{T}, \quad x_{2}=[1,1,1]^{T}
$$

The eigenvector associated with the eigenvalue $\lambda=1$ must satisfy

$$
\left[\begin{array}{ccc}
2-1 & 1 & 0 \\
1 & 2-1 & 0 \\
0 & 0 & 3-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This implies that we must have $x_{1}=-x_{2}$ and that $x_{3}=0$. One choice for the eigenvector associated with the eigenvalue $\lambda=1$ is

$$
x_{3}=[1,-1,0]^{T}
$$

Notice that if x is an eigenvector associated with the eigenvalue λ, then $A x=\lambda x$. So the matrix A takes the vector x into a scalar multiple of itself.

Geometrically, if λ is real, A has the effect of stretching (or shrinking) x by a factor of λ.

In order to be able to compute the l_{2} norm of a matrix, we need the following

Definition. The spectral radius $\rho(A)$ of an $n \times n$ matrix A is defined by $\rho(A)=\max |\lambda|$ where λ is an eigenvalue of A.

Example. For the matrix A in the example on p.17,

$$
\rho(A)=\max \{|3|,|3|,|1|\}=3
$$

Theorem. If A is an $n \times n$ matrix then
(i) $\|A\|_{2}=\left(\rho\left(A^{T} A\right)\right)^{1 / 2}$;
(ii) $\rho(A) \leq\|A\|$ for any natural norm $\|\cdot\|$.

Proof. (ii) Let λ be any eigenvalue of A with the corresponding eigenvector x. W.l.o.g. (why?) we can assume that $\|x\|=1$. Since $A x=\lambda x$,

$$
|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\|
$$

Hence, $\rho(A)=\max |\lambda| \leq\|A\|$.

Example. For the matrix A in the example on p.17,

$$
A^{T} A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
5 & 4 & 0 \\
4 & 5 & 0 \\
0 & 0 & 9
\end{array}\right] .
$$

The characteristic polynomial $p(\lambda)$ of $A^{T} A$ is

$$
-(\lambda-1)(\lambda-9)^{2}
$$

which admits $\lambda=1$ and $\lambda=9$ as its roots. Hence.

$$
\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}=\sqrt{\max \{1,9\}}=3 .
$$

When we use iterative matrix technique, we will need to know when powers of a matrix become small.

Definition. We call an $n \times n$ matrix A convergent if $\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i, j}=0$ for each i, j.
Example. For $A=\left[\begin{array}{cc}1 / 2 & 0 \\ 1 / 4 & 1 / 2\end{array}\right]$,

$$
A^{2}=\left[\begin{array}{cc}
1 / 4 & 0 \\
1 / 4 & 1 / 4
\end{array}\right], A^{3}=\left[\begin{array}{cc}
1 / 8 & 0 \\
3 / 16 & 1 / 8
\end{array}\right], A^{4}=\left[\begin{array}{cc}
1 / 16 & 0 \\
1 / 8 & 1 / 16
\end{array}\right],
$$

and in general, $A^{k}=\left[\begin{array}{cc}(1 / 2)^{k} & 0 \\ \frac{k}{2^{k+1}} & (1 / 2)^{k}\end{array}\right]$. Since $\lim _{k \rightarrow \infty}(1 / 2)^{k}=0$, and $\lim _{k \rightarrow \infty} k / 2^{(k+1)}=0, A$ is a convergent matrix.

Note that the convergent matrix A in the last example has $\rho(A)=1 / 2<1$, since $1 / 2$ is the only eigenvalue of A. This generalizes:

Theorem. The following statements are equivalent.
(i) A is a convergent matrix;
(ii) $\rho(A)<1$;
(iii) $\lim _{n \rightarrow \infty} A^{n} x=0$ for every x;
(iv) $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for all natural norms.

Iterative Techniques

- In problems where the matrix A is sparse, iterative techniques are often used to solve the system $A x=b$ since they preserve the sparse structure of the matrix.
- Iterative techniques convert the system $A x=b$ into an equivalent system of the form $x=T x+c$ where $T \in \mathbb{R}^{n \times n}$ is a fixed matrix, and $c \in \mathbb{R}^{n}$ is a fixed vector.
- An initial vector $x^{(0)}$ is selected, and then a sequence of approximate solution vectors is generated:

$$
x^{(k)}=T x^{(k-1)}+c .
$$

- Iterative techniques are rarely used in very small systems. In these cases, iterative methods may be slower since they require several iterations to obtain the desired accuracy.

Iterative Techniques: General Approach

- Split the matrix A :

$$
\begin{aligned}
A x & =b \\
(M+(A-M)) x & =b \\
M x & =b+(M-A) x \\
x & =\left(I-M^{-1} A\right) x+M^{-1} b .
\end{aligned}
$$

Iteration becomes

$$
x^{(k+1)}=\underbrace{\left(I-M^{-1} A\right)}_{T} x^{(k)}+\underbrace{M^{-1} b}_{c} .
$$

Problem. How to choose M ?

Jacobi Iterative Method

$$
M=D=\operatorname{diag}(A)=\left(\begin{array}{cccc}
a_{1,1} & 0 & \ldots & 0 \\
0 & a_{2,2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & a_{n, n}
\end{array}\right)
$$

To construct the matrix T and vector c, let

$$
L=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
-a_{2,1} & 0 & \cdots & 0 & 0 \\
-a_{3,1} & -a_{3,2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-a_{n, 1} & -a_{n, 2} & \cdots & -a_{n, n-1} & 0
\end{array}\right), \quad U=\left(\begin{array}{ccccc}
0 & -a_{1,2} & -a_{1,3} & \ldots & -a_{1, n} \\
0 & 0 & -a_{2,3} & \cdots & -a_{2, n} \\
0 & 0 & 0 & \cdots & -a_{3, n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \vdots & . & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

Then $A=D-L-U$.

$$
\begin{aligned}
A x & =b \\
(D-L-U) x & =b \\
D x & =(L+U) x+b \\
x & =D^{-1}(L+U) x+D^{-1} b
\end{aligned}
$$

which results in the iteration

$$
x^{(k+1)}=\underbrace{D^{-1}(L+U)}_{T} x^{(k)}+\underbrace{D^{-1} b}_{c} .
$$

Jacobi Iterative Method: an Example

Solve

$$
\left[\begin{array}{cccc}
10 & -1 & 2 & 0 \\
-1 & 11 & -1 & 3 \\
2 & -1 & 10 & -1 \\
0 & 3 & -1 & 8
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
6 \\
25 \\
-11 \\
15
\end{array}\right]
$$

by Jacobi's method.

$$
D=\left[\begin{array}{cccc}
10 & 0 & 0 & 0 \\
0 & 11 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 8
\end{array}\right] \Longrightarrow D^{-1}=\left[\begin{array}{cccc}
1 / 10 & 0 & 0 & 0 \\
0 & 1 / 11 & 0 & 0 \\
0 & 0 & 1 / 10 & 0 \\
0 & 0 & 0 & 1 / 8
\end{array}\right]
$$

$$
L=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & -3 & 1 & 0
\end{array}\right], U=\left[\begin{array}{cccc}
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence,

$$
T=D^{-1}(L+U)=\left[\begin{array}{cccc}
0 & 1 / 10 & -1 / 5 & 0 \\
1 / 11 & 0 & 1 / 11 & -3 / 11 \\
-1 / 5 & 1 / 10 & 0 & 1 / 10 \\
0 & -3 / 8 & 1 / 8 & 0
\end{array}\right], c=D^{-1} b=\left[\begin{array}{c}
3 / 5 \\
\frac{25}{11} \\
-\frac{11}{10} \\
\frac{15}{8}
\end{array}\right]
$$

Take $x^{(0)}=[0,0,0,0]^{T}$. Then

$$
\begin{aligned}
x^{(1)} & =T x^{(0)}+c=c=[0.6000,2.2727,-1.1000,1.8750]^{T} \\
x^{(2)} & =T x^{(1)}+c=[1.0473,1.7159,-0.8052,0.8852]^{T} \\
\vdots & \vdots \vdots \\
x^{(9)} & =T x^{(8)}+c=[0.9997,2.0004,-1.0004,1.0006]^{T} \\
x^{(10)} & =T x^{(9)}+c=[1.1001,1.9998,-0.9998,0.9998]^{T}
\end{aligned}
$$

The decision to stop after ten iterations was based on the criterion

$$
\frac{\left\|x^{(10)}-x^{(9)}\right\|_{\infty}}{\left\|x^{(10)}\right\|_{\infty}}=\frac{8.0 \times 10^{-4}}{1.9998}<10^{-3}
$$

Comments on Jacobi’s Method

$$
x^{(k+1)}=\underbrace{D^{-1}(L+U)}_{T} x^{(k)}+\underbrace{D^{-1} b}_{c} .
$$

1. The algorithm requires that $a_{i, i} \neq 0$ for each i. If one of the $a_{i, i}=0$, and the system is nonsingular, then a reordering of the equations can be performed so that no $a_{i, i}=0$;
2. To accelerate convergence, the equations should be arranged so that $a_{i, i}$ is as large as possible;
3. A possible stopping criterion is to iterate until

$$
\frac{\left\|x^{(k)}-x^{(k-1)}\right\|}{\left\|x^{(k)}\right\|}<\epsilon
$$

Gauss-Seidel Iterative Method

- Write out Jacobi's method $x^{(k+1)}=\underbrace{D^{-1}(L+U)}_{T} x^{(k)}+\underbrace{D^{-1} b}_{c}$, we find that

$$
x_{i}^{(k+1)}=\frac{\sum_{j=1, j \neq i}^{n}\left(-a_{i, j} x_{j}^{(k)}\right)+b_{i}}{a_{i, i}} \quad \text { for } 1 \leq i \leq n
$$

Notice that to compute $x_{i}^{(k+1)}$, the components $x_{i}^{(k)}$ are used. However, for $i>1, x_{1}^{(k+1)}, x_{2}^{(k+1)}, \ldots, x_{i-1}^{(k+1)}$ have already been computed, and are likely better approximations to the actual solutions than $x_{1}^{(k)}, x_{2}^{(k)}, x_{i-1}^{(k)}$. Hence, it seems reasonable to compute with these most recently computed values, i.e.,

$$
x_{i}^{(k+1)}=\frac{-\sum_{j=1}^{i-1}\left(a_{i, j} x_{j}^{(k+1)}\right)-\sum_{j=i+1}^{n}\left(a_{i, j} x_{j}^{(k)}\right)+b_{i}}{a_{i, i}}
$$

Matrix Formulation. Set $M=D-L$.

$$
\begin{aligned}
A x & =b \\
(D-L-U) x & =b \\
(D-L) x & =U x+b \\
x & =(D-L)^{-1} U x+(D-L)^{-1} b .
\end{aligned}
$$

Hence, iteration becomes

$$
x^{(k+1)}=\underbrace{(D-L)^{-1} U}_{T_{g}} x^{(k)}+\underbrace{(D-L)^{-1} b}_{c_{g}}
$$

Notice that $(D-L)$ is lower triangular. It is invertible if and only if $a_{i, i} \neq 0$.

Gauss-Seidel Method: an Example

For the linear system on p.28,

$$
T_{g}=\left[\begin{array}{cccc}
0 & 1 / 10 & -1 / 5 & 0 \\
0 & \frac{1}{110} & \frac{4}{55} & -3 / 11 \\
0 & -\frac{21}{1100} & \frac{13}{275} & \frac{4}{55} \\
0 & -\frac{51}{8800} & -\frac{47}{2200} & \frac{49}{440}
\end{array}\right], \quad c_{g}=\left[\begin{array}{c}
3 / 5 \\
\frac{128}{55} \\
-\frac{543}{550} \\
\frac{3867}{4400}
\end{array}\right]
$$

Take $x^{(0)}=[0,0,0,0]^{T}$. Then

$$
\begin{aligned}
x^{(1)} & =T_{g} x^{(0)}+c_{g}=c_{g}=[0.6000,2.3272,-0.9873,0.8789]^{T}, \\
\ldots & \cdots \\
x^{(4)} & =T_{g} x^{(3)}+c_{g}=[1.0009,2.0003,-1.0003,0.9999]^{T}, \\
x^{(5)} & =\quad T_{g} x^{(4)}+c_{g}=[1.1001,2.0000,-1.0000,1.0000]^{T} .
\end{aligned}
$$

Since

$$
\frac{\left\|x^{(5)}-x^{(4)}\right\|_{\infty}}{\left\|x^{(5)}\right\|_{\infty}}=\frac{0.0008}{2.0000}=4 \times 10^{-4}
$$

$x^{(5)}$ is accepted as a reasonable approximation to the solution.

Convergence of General Iteration Techniques

$$
x^{(k)}=T x^{(k-1)}+c
$$

Lemma. If the spectral radius $\rho(T)$ satisfies $\rho(T)<1$ then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=I+T+T^{2}+\cdots=\sum_{j=0}^{\infty} T^{j}
$$

Theorem. For any $x^{(0)} \in \mathbb{R}^{n}$, the sequence $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ defined by

$$
x^{(k)}=T x^{(k-1)}+c, \quad \text { for each } k \geq 1
$$

converges to the unique solution $x=T x+c$ if and only if $\rho(T)<1$.

Proof.
(\Longleftarrow) Assume that $\rho(T)<1$. Then

$$
\begin{aligned}
x^{(k)} & =T x^{(k-1)}+c \\
& =T\left(T x^{(k-2)}+c\right)+c=T^{2} x^{(k-2)}+(T+I) c \\
& \cdots \\
& =T^{k} x^{(0)}+\left(T^{k-1}+\cdots+T+I\right) c .
\end{aligned}
$$

Since $\rho(T)<1$, the matrix T is convergent, and by the theorem (iv) on p.23, $\lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$. The Lemma on p. 35 implies that

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c
$$

Hence, the sequence $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ converges to the vector $x=(I-T)^{-1} c$ and $x=T x+c$.
(\Longrightarrow) We show that for any $z \in \mathbb{R}^{n}, \lim _{k \rightarrow \infty} T^{k} z=0$. By the theorem on p.23, this is equivalent to $\rho(T)<1$.

Let z be an arbitrary vector, and x be the unique solution to $x=T x+c$. Define

$$
x^{(k)}= \begin{cases}x-z & \text { if } k=0 \\ T x^{(k-1)}+c & \text { if } k \geq 1\end{cases}
$$

Then $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ converges to x. Also,

$$
\begin{aligned}
x-x^{(k)} & =(T x+c)-\left(T x^{(k-1)}+c\right)=T\left(x-x^{(k-1)}\right) \\
& =T^{2}\left(x-x^{(k-2)}\right)=\cdots=T^{k}\left(x-x^{(0)}\right)=T^{k} z
\end{aligned}
$$

Hence, $\lim _{k \rightarrow \infty} T^{k} z=0$. Since $z \in \mathbb{R}^{n}$ is arbitrary, T is a convergent matrix (p. 23 (i)), and that $\rho(T)<1$ (p. 23 (ii)).

This allows us to derive some related results on the rates of convergence.

Corollary. If $\|T\|<1$ for any natural matrix norm and c is a given vector, then the sequence $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ defined by $x^{(k)}=T x^{(k-1)}+c$ converges, for any $x^{(0)} \in \mathbb{R}^{n}$, to a vector $x \in \mathbb{R}^{n}$, and the following error bounds hold:
(i) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x^{(0)}-x\right\|$;
(ii) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Recall that $\rho(A) \leq\|A\|$ for any natural norm (the theorem on p.20). In practice

$$
\left\|x-x^{(k)}\right\| \approx \rho(T)^{k}\left\|x^{(0)}-x\right\|
$$

Hence, it is desirable to have $\rho(T)$ as small as possible.

Some results for Jacobi and Gauss-Seidel methods.
Theorem. If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequence $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ that converge to the unique solution $A x=b$.

Remark. No general results exist to tell which of the two methods will converge more quickly.

The following result applies in a variety of examples.
Theorem. (Stein-Rosenberg)
If $a_{i, j} \leq 0$, for each $i \neq j$, and $a_{i, i}>0$, for each $i=1,2, \ldots, n$, then one and only one of the following statements holds:
a. $0 \leq \rho\left(T_{g}\right)<\rho\left(T_{j}\right)<1$;
b. $1 \leq \rho\left(T_{j}\right)<\rho\left(T_{g}\right) ;$
c. $\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=0$;
d. $\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=1$.

Note. If one method converges, both do and Gauss-Seidel method converges faster. Otherwise, if one method diverges, both do. The divergence for Gauss-Seidel is more pronounced.

Warning. This result only holds when $a_{i, j} \leq 0$ for $i \neq j$, and $a_{i, i}>0$.

Successive Over Relaxation (SOR)

- Suppose $\tilde{x}^{(k+1)}$ is the iterate from Gauss-Seidel using $x^{(k)}$. The $(k+1)$-th iterate of SOR is defined by

$$
x^{(k+1)}=w \tilde{x}^{(k+1)}+(1-w) x^{(k)}
$$

where $1<w<2$.

- Matrix notation.

$$
\begin{gathered}
x^{(k)}=T_{w} x^{(k-1)}+c_{w}, \quad \text { where } \\
T_{w}=(D-w L)^{-1}((1-w) D+w U), \quad c_{w}=w(D-w L)^{-1} b
\end{gathered}
$$

Example. Solve

$$
\begin{gathered}
{\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
30 \\
-24
\end{array}\right]} \\
T_{w}=(D-w L)^{-1}((1-w) D+w U) \\
=\left[\begin{array}{cc}
1-w & -3 / 4 w \\
-3 / 16 w(4-4 w) & \frac{9}{16} w^{2}+1-w \\
-\frac{3}{64} w^{2}(4-4 w) & \frac{9}{64} w^{3}+1 / 16 w(4-4 w) \\
1+1 / 16 w^{2}-w
\end{array}\right] \\
c_{w}=w(D-w L)^{-1} b=\left[\begin{array}{cc}
-9 / 2 w^{2}+15 / 2 w \\
-\frac{9}{8} w^{3}+\frac{15}{8} w^{2}-6 w
\end{array}\right]
\end{gathered}
$$

Take $x^{(0)}=[1,1,1]^{T}$. Then for $w=1.25$,

$$
\begin{aligned}
x^{(1)} & =T_{w} x^{(0)}+c_{w}=[6.312500,3.5195313,-6.6501465]^{T} \\
x^{(2)} & =T_{w} x^{(2)}+c_{w}=[2.6223145,3.9585266,-4.6004238]^{T}, \\
\vdots & \vdots \vdots \\
x^{(6)} & =T_{w} x^{(5)}+c_{w}=[2.9963276,4.0029250,-4.9982822]^{T}, \\
x^{(7)} & =T_{w} x^{(6)}+c_{w}=[3.0000498,4.0002586,-5.0003486]^{T} .
\end{aligned}
$$

Note that the exact solution is $[3,4,-5]^{T}$.

It can be difficult to select w optimally. Indeed, the answer to this question is not known for general $n \times n$ linear systems. However, we do have the following results:

Theorem. (Kahan)
If $a_{i, i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{w}\right) \geq|w-1|$. This implies that the SOR method can converge only if $0<w<2$. Theorem. (Ostrowski-Reich)
If A is positive definite matrix, and $0<w<2$, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$.

Theorem. If A is positive definite and tridiagonal, then $\rho\left(T_{g}\right)=\left(\rho\left(T_{j}\right)\right)^{2}<1$, and the optimal choice of w for the SOR method is

$$
w=\frac{2}{1+\sqrt{1-\left(\rho\left(T_{j}\right)\right)^{2}}}
$$

With this choice of w, we have $\rho\left(T_{w}\right)=w-1$.

