
'

&

$

%

Solutions of Equations
in One Variable

Simon Fraser University – Surrey Campus

MACM 316 – Spring 2005

Instructor: Ha Le
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Overview

• Iterative Methods

• The Bisection Method

• Fixed-Point Iteration

• Newton-Raphson’s Method

• Secant Method

• Method of False Position

• Error Analysis for Iterative Methods

• Accelerating Convergence

• Zeros of Polynomials and Müller’s Method
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The Basic Problem

• Given f : � =⇒ � , find x ∈ � such that f(x) = 0.

• In most cases, it is not possible to solve analytically. We will

consider iterative methods to approximate the solution.

f(x)
Tangent lines

 

5 Iterations of Newton’s Method Applied to
f(x) = x^3-x

with Initial Point x = -.432
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The Bisection Method

Input. f ∈ C[a, b] with f(a) · f(b) < 0.

There must be a p ∈ � in (a, b) with f(p) = 0 by the

Theorem 1 Intermediate Value Theorem (IVT). If f ∈ C[a, b] and

K is any number between f(a) and f(b), then there exists a number

c in (a, b) for which f(c) = K.

Algorithm description.

• a1 := a, b1 := b, p1 := 1/2(a1 + b1);

• if f(p1) = 0 then we are done (p = p1).

• if f(p1)f(a1) < 0, then ∃p ∈ (a1, p1) s.t. f(p) = 0. Set a2 := a1,

and b2 := p1. Otherwise, f(p1)f(b1) < 0. Set a2 := p1 and b2 := b1.

• Reapply the process to [a2, b2].
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Bisection: f(x)=x^2–2.5*x+1.5),x in [0.6,1.2]

b[1]a[1]
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The Bisection Method: Stopping Criteria

Once appropriate stopping criteria are satisfied, we set the

midpoint of the interval equal to the estimate for the root.

Possible stopping criteria.

(1)
1

2
(bn − an) < TOL or |pn − pn−1| < TOL.

– GOOD: ensures that the returned root value pn is within

TOL of the exact value p; easy error analysis.

– BAD: does not ensure that f(pn) is small; an absolute

rather than a relative error.

(2)
|pn − pn−1|

|pn|
< TOL, pn 6= 0.

Usually preferred over (1) if nothing is known about f or p.
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(3) |f(pn)| < TOL.

Ensures that f(pn) is small, but pn may differ significantly

from the true root p.

(4) We can also carry out a fixed number of iterations N . This is

closely related to (1).

• The best stopping criteria will depend on what is known about f

and p and on the type of problem.

• It is often useful to use the relative error test (2) with a fixed,

maximum number of steps (4).
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The Bisection Method: Fine Points

• pi = ai +
bi − ai

2
is preferred over pi =

ai + bi

2
.

It is usually best in bisection to add a small correction to a

previous approximation. Could otherwise lead to p /∈ [a, b].

• To avoid underflows and overflows, it is sometimes preferred to

use sign(f(ai)) · sign(f(bi)) > 0 rather than f(ai) · f(bi) > 0.

• We want to choose the initial interval as small as possible to

minimize the number of iterations.

• The bisection method in general is slow to converge. However,

the method always converges (by the intermediate value theorem)

which makes it an excellent choice to start other methods, or to use

when other methods fail.
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Accuracy of Bisection Method

Theorem 2 Suppose that f ∈ C[a, b] and f(a) · f(b) < 0. The

Bisection method generates a sequence {pn}∞n=1 approximating a

zero p of f with

|pn − p| ≤ b − a

2n
, when n ≥ 1.

Proof.

∀n ≥ 1, bn − an =
1

2n−1
(b − a) and p ∈ (an, bn).

Since pn =
1

2
(an + bn), ∀n ≥ 1,

|pn − p| ≤ 1

2
(bn − an) =

b − a

2n
.
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Convergence of Bisection Method

Recall. Suppose {βn}∞n=1 is a sequence known to converge to zero,

and {αn}∞n=1 converges to a number α. If a positive constant K

exists with

|αn − α| ≤ K|βn| for large n,

then we say that {αn}∞n=1 converges to α with rate of convergence

O(βn). It is indicated by writing αn = α + O(βn).

• Since |pn − p| ≤ b − a

2n
, the sequence {pn}∞n=1 converges to p with

rate of convergence O

(
1

2n

)

. That is, pn = p + O

(
1

2n

)

.
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The Bisection Method: an Example

• Find a bound N for the number of iterations needed to

approximate a solution to the equation x3 + 4x2 − 10 = 0 on the

interval [1, 2] to an accuracy of 10−3.

• |pN − p| ≤ b − a

2N
= 2−N < 10−3.

=⇒ log10 2−N < log10 10−3

=⇒ −N log10 2 < −3

=⇒ N >
3

log10 2
≈ 9.96

=⇒ N ≥ 10.
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Fixed Point Iteration

Definition 1 A number p is a fixed point for a given function g if

g(p) = p.

Example 1 For g(x) = x2 − 2, −2 ≤ x ≤ 3, x = −1 and x = 2 are

two fixed points for g.

Remark 1 Fixed-point problems and root finding problems are

equivalent.

Let g(x) − x = f(x).

f has a root p =⇒ g has a fixed point p;

g has a fixed point p =⇒ f has a root p.
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Remark 2 For a given f(x), there might be many choices for g(x).

Example 2 For f(x) = x3 + 4x2 − 10 = 0, one can verify that the

fixed point of each gi(x) is a solution to f(x) = 0.

(a) x = g1(x) = x − x3 − 4x2 + 10;

(b) x = g2(x) =

(
10

x
− 4x

)1/2

;

(c) x = g3(x) =
1

2
(10 − x3)1/2;

(d) x = g4(x) =

(
10

4 + x

)1/2

;

(e) x = g5(x) = x − x3 + 4x2 − 10

3x2 + 8x
.
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Fixed Points: Existence & Uniqueness

Theorem 3 (a) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b],

then g has a fixed point in [a, b];

(b) If, in addition, g′(x) exists on (a, b) and a positive k < 1 exists

with |g′(x)| ≤ k, ∀x ∈ (a, b), then the fixed point in [a, b] is unique.

Proof. (a)

• If g(a) = a or g(b) = b, then g has a fixed point at an end point;

• Otherwise, g(a) > a and g(b) < b. Define h(x) = g(x) − x.

h is continuous on [a, b]

h(a) = g(a) − a > 0

h(b) = g(b) − b < 0







IVT
=⇒ ∃p ∈ (a, b) s.t. h(p) = 0.

Since 0 = h(p) = g(p) − p, p is a fixed point of g.
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In order to prove part (b), we need

Theorem 4 Mean Value Theorem (MVT). If f ∈ C[a, b] and

f is differentiable on (a, b), then a number c in (a, b) exists

with f ′(c) =
f(b) − f(a)

b − a
.

f(x)
 

The Mean Value Theorem Applied to
f(x) = sin(x)

on the Interval [1, 5]
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Proof. (b) Suppose that p and q are two different fixed points on

[a, b], by MVT, ∃ ξ ∈ (p, q) ∈ [a, b] s.t
g(p) − g(q)

p − q
= g′(ξ). Thus

|p − q| = |g(p) − g(q)| = |g′(ξ)||p − q|
≤ k|p − q| < |p − q|.

A contradiction. Hence p = q, i.e., the fixed point on [a, b] is

unique.
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Fixed Point Iteration: Main Idea

We want to approximate the fixed point of a function g(x).

• choose an initial approximation p0;

• generate a sequence {pn}∞n=0 such that pn = g(pn−1), n ≥ 1.

IF the sequence converges to p and g is continuous

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g
(

lim
n→∞

pn−1

)

= g(p).
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Fixed Points: Convergence

The following theorem and its corollary give us some clues

concerning the paths we should pursue and, perhaps more

importantly, some we should reject.

Theorem 5 Fixed-Point Theorem (FPT). Let g ∈ C[a, b] be such

that g(x) ∈ [a, b], for all x in [a, b]. Suppose, in addition, that g′

exists on (a, b) and that a constant 0 < k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b).

Then, for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1,

converges to the unique fixed point p in [a, b].

18



'

&

$

%

Proof.

pn = g(pn−1)

g : [a, b] → [a, b]

p0 ∈ [a, b]







=⇒







{pn}∞n=0 is defined ∀n ≥ 0

pn ∈ [a, b] ∀n.

|pn − p| = |g(pn−1) − g(p)| MVT
= |g′(ξn)||pn−1 − p| (1)

≤ k|pn−1 − p|

where ξn ∈ (a, b). Applying (1) inductively gives

|pn − p| ≤ k|pn−1 − p| ≤ k2|pn−2 − p| ≤ · · · ≤ kn|p0 − p|.

Since 0 < k < 1, limk→∞ kn = 0, and

lim
k→∞

|pn − p| ≤ lim
k→∞

kn|p0 − p| = 0.

Hence, {pn}∞n=0 converges to p.
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Corollary 1 If g satisfies the hypotheses of Theorem 5, then

bounds for the error involved in using pn to approximate p are

given by

|pn − p| ≤ kn max{p0 − a, b − p0}
and

|pn − p| ≤ kn

1 − k
|p1 − p0|, for all n ≥ 1.
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Newton-Raphson Method

• One of the most powerful and well-known methods.

Pros. Much faster than Bisection method.

Cons. (1) Need f ′(x); (2) Not guaranteed to always converge.

Goal. x = p such that f(x) = 0.
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Idea. Use slope as well as function values.

f(x)
Tangent lines

 

5 Iterations of Newton’s Method Applied to
f(x) = x*sin(x)

with Initial Point x = 1
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Newton-Raphson Method: Derivation

Let p be a root of f(x) = 0. Suppose f ∈ C2[a, b]. Let x̄ ∈ [a, b] be

an approximation to p such that

f ′(x̄) 6= 0 and |x̄ − p| is sufficiently small.

By Taylor’s theorem:

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
1

2
f ′′(ξ(x))(x − x̄)2 (2)

where ξ(x) lies between x and x̄. Set x = p in (2):

0 = f(x̄) + f ′(x̄)(p − x̄) +
1

2
f ′′(ξ(p))(p − x̄)2.

If |p − x̄| is small, |p − x̄|2 is smaller. Hence,

0 ≈ f(x̄) + f ′(x̄)(p − x̄) =⇒ p ≈ x̄ − f(x̄)

f ′(x̄)
.
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• Newton’s method begins with an estimate p0 and generates a

sequence {pn}:

pn = pn−1 −
f(pn−1)

f ′(pn−1)
.

• A stopping criterion is similar to that of Bisection method, e.g.,

(1) |pn − pn−1| < ε, (2)
|pn − pn−1|

|pn|
< ε, (3) |f(pn)| < ε.

• Notice that Newton’s method fails if f ′(pn−1) = 0.

• The method is most effective when f ′ is bounded away from zero

near p.

• It follows from the derivation that p − x̄ has to be small, i.e., we

need a good initial guess.
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Newton-Raphson Method: Example

• Use Newton’s method to compute the square root of a number R.

• Want to find the roots of p2 − R = 0. Let f(x) = x2 − R. Then

f ′(x) = 2x. Newton’s method takes the form

pn = pn−1 −
f(pn−1)

f ′(pn−1)

=
1

2
pn−1 +

R

2 pn−1
.

Try R = 2 and p0 = 2:

p1 = 1.500000000, p2 = 1.416666666,

p3 = 1.414215686, p4 = 1.414213562
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Newton-Raphson Method: Convergence

Newton’s method can be shown to converge under reasonable

assumptions (smoothness of f , a good initial guess, f ′(p) 6= 0).

Theorem 6 Let f ∈ C2[a, b]. If p ∈ [a, b] is such that

f(p) = 0 and f ′(p) 6= 0,

then there exists a δ > 0 such that Newton’s method generates a

sequence {pn}∞n=1 converging to p for any initial approximation

p0 ∈ [p − δ, p + δ].
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Proof. General direction. Consider

g(x) = x − f(x)

f ′(x)
. (3)

Let k ∈ (0, 1),

(1) find δ > 0 s.t. g : [p − δ, p + δ] −→ [p − δ, p + δ];

(2) show that |g′(x)| ≤ k, ∀x ∈ (p − δ, p + δ).

FPT
=⇒ ∀p0 ∈ [p − δ, p + δ], the sequence defined by

pn = g(pn−1), n ≥ 1

converges to the unique fixed point p in [p − δ, p + δ].
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A proof for (2)

f ′ ∈ C[a, b]

f ′(p) 6= 0






=⇒

∃δ1 > 0 s.t.

f ′(x) 6= 0 ∀x ∈ [p − δ1, p + δ1] ⊆ [a, b].

By (3), g is defined and continuous on [p − δ1, p + δ1].

Also by (3),

g′(x) =
f(x)f ′′(x)

(f ′(x))2
, ∀x ∈ [p − δ1, p + δ1].

0 < k < 1

g′ ∈ C[p − δ1, p + δ1]

g′(p) = 0







=⇒
∃δ, 0 < δ < δ1 s.t.

|g′(x)| ≤ k, ∀x ∈ [p − δ, p + δ].
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A proof for (1)

g ∈ C[p − δ, p + δ]

g diff’able on (p − δ, p + δ)

x ∈ [p − δ, p + δ]







MVT
=⇒

∃ ξ between x and p s.t.

|g(x) − g(p)| = |g′(ξ)| |x − p|

=⇒ |g(x) − p| = |g(x) − g(p)| = |g′(ξ)||x − p| ≤ k|x − p| < |x − p|.
Hence,

∀ x ∈ [p − δ, p + δ], if |x − p| < δ, then |g(x) − p| < δ,

i.e., g(x) ∈ [p − δ, p + δ].
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Secant Method

• Newton’s method has the major difficulty that the derivative of f

is needed at each approximation. Since

f ′(pn−1) = lim
x→pn−1

f(x) − f(pn−1)

x − pn−1
, we approximate

f ′(pn−1) ≈ f(pn−2) − f(pn−1)

pn−2 − pn−1

=
f(pn−1) − f(pn−2)

pn−1 − pn−2
.

This gives the Secant Method:

pn = pn−1 −
f(pn−1)(pn−1 − pn−2)

f(pn−1) − f(pn−2)
.

Note. Secant method needs two initial approximations p0 and p1.
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Secant: f(x)=x^3–3*x+1,x in [0,1]
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Method of False Position

• Both Newton’s method and Secant method have the limitation

that they may diverge when the initial guesses are not sufficiently

close to the root.

• Bisection method uses the idea of bracketing the root at each

step to ensure convergence.

• The method of false position, to some extent, is a combination of

the bisection method and the secant method.

Given f ∈ C[p0, p1], f(p0) · f(p1) < 0:

secant: (p0, p1) −→ (p1, p2) −→ · · ·
false position:

(p0, p1)
secant−→ p2







(p0, p2), f(p0) · f(p2) < 0

(p1, p2), f(p1) · f(p2) < 0
−→ · · ·
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• This method nicely illustrates how bracketing a root can be used

to develop a more sophisticated root finding method.

• In terms of performance, the Method of False Position is often

slightly slower than the secant method since it pays for some extra

insurance in finding a root. It is often (but not always) faster than

the Bisection Method.
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Error Analysis

Definition 2 Suppose {pn}∞n=0 is a sequence that converges to p,

with pn 6= p for all n. If positive constant λ and α exist with

lim
n→∞

|pn+1 − p|
|pn − p|α = λ, (4)

then {pn}∞n=0 converges to p of order α, with asymptotic error

constant λ.

• A sequence with a higher order of convergence converges more

rapidly than a sequence with a lower order.

• The constant λ affects the speed of convergence, but is not so

important as the order α.
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Two common cases:

• If α = 1, the sequence is linearly convergent;

• If α = 2, the sequence is quadratically convergent.

Example 3

Suppose

{pn}∞n=0 linearly convergent to 0,

{p̃n}∞n=0 quadratically convergent to 0

with

lim
n→∞

|pn+1|
|pn|

= lim
n→∞

|p̃n+1|
|p̃n|2

= 0.5.

For simplicity, suppose that

|pn+1|
|pn|

≈ 0.5 and
|p̃n+1|
|p̃n|2

≈ 0.5. (5)

35



'

&

$

%

By (5),

|pn − 0| = |pn| ≈ 0.5|pn−1| ≈ (0.5)2|pn−2| ≈ · · ·≈ (0.5)n|p0|,

|p̃n − 0| = |p̃n| ≈ 0.5|p̃n−1|2 ≈ (0.5)(0.5|p̃n−2|2)2 = (0.5)3|p̃n−2|4

≈ (0.5)3(0.5|p̃n−3|2)4 = (0.5)7|p̃n−3|8

≈ · · ·≈ (0.5)2
n
−1|p̃0|2

n

.

For |p0| = |p̃0| = 1,

n {pn}∞
n=0

{p̃n}∞
n=0

1 5.0000 × 10
−1

5.0000 × 10
−1

2 2.5000 × 10
−1

1.2500 × 10
−1

3 1.2500 × 10−1 7.8125 × 10−3

4 6.2500 × 10
−2

3.0518 × 10
−5

5 3.1250 × 10
−2

4.6566 × 10
−10

6 1.5625 × 10−2 1.0842 × 10−19

7 7.8125 × 10
−3

5.8775 × 10
−39
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Convergence of Fixed-Point Iteration

Theorem 7 Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all

x ∈ [a, b]. Suppose, in addition, that g′ is continuous on (a, b) and

a positive constant k < 1 exists with

|g′(k)| ≤ k, for all x ∈ (a, b).

If g′(p) 6= 0, then for any number p0 in [a, b], the sequence

pn = g(pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a, b].
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Proof. By Theorem 5, the sequence pn converges to p.

g ∈ C[a, b]

g′ ∈ C(a, b)







MVT
=⇒ pn+1 − p = g(pn) − g(p) = g′(ξn)(pn − p)

where ξn is between pn and p.

Since {pn}∞n=0 −→ p, {ξn}∞n=0 −→ p.

Since g′ is continuous on (a, b),

lim
n→∞

g′(ξn) = g′( lim
n→∞

ξn) = g′(p).

Hence,

lim
n→∞

pn+1 − p

pn − p
= lim

n→∞

g′(ξn) = g′(p) and lim
n→∞

|pn+1 − p|
|pn − p| = |g′(p)|.
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The following theorem describes additional conditions that ensure

the quadratic convergence.

Theorem 8 Let p be a solution of the equation x = g(x). Suppose

that g′(p) = 0 and g′′ is continuous and strictly bounded by M on

an open interval I containing p. Then there exists a δ > 0 such

that, for p0 ∈ [p − δ, p + δ], the sequence defined by pn = g(pn−1),

when n ≥ 1, converges at least quadratically to p. Moreover, for

sufficiently large values of n,

|pn+1 − p| <
M

2
|pn − p|2.
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Proof. Choose k ∈ (0, 1). It follows from the proof of Thm 6 that

(1) ∃δ > 0 s.t. on the interval [p− δ, p + δ] ⊆ I, |g′(x)| ≤ k < 1 and

g′′ is continuous.

(2) the terms of the sequence {pn}∞n=0 are contained in [p− δ, p+ δ].

Expanding g(x) in a linear Taylor polynomial for x ∈ [p − δ, p + δ]

gives

g(x) = g(p) + g′(p)(x − p) +
g′′(ξ)

2
(x − p)2,

where ξ lies between x and p.

g(p) = p

g′(p) = 0






=⇒ g(x) = p +

g′′(ξ)

2
(x − p)2.

When x = pn,

pn+1 = g(pn) = p +
g′′(ξn)

2
(pn − p)2,
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with ξn between pn and p. Thus,

pn+1 − p =
g′′(ξn)

2
(pn − p)2.

|g′(x)| ≤ k < 1 on [p − δ, p + δ]

g : [p − δ, p + δ] −→ [p − δ, p + δ]







FPT
=⇒ {pn}∞n=0 −→ p.

Since ξn is between p and pn for each n, {ξn}∞n=0 −→ p. Hence,

lim
n→∞

|pn+1 − p|
|pn − p|2 =

|g′′(p)|
2

.

This implies that the sequence {pn}∞n=0 is quadratically convergent

if g′′(p) 6= 0 and of higher-order convergence if g′′(p) = 0.

Since g′′ is continuous, and strictly bounded by M on [p − δ, p + δ],

for sufficiently large values of n:

|pn+1 − p| <
M

2
|pn − p|2.
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• The idea behind finding iteration methods with a high order of

convergence is to look for schemes whose derivatives are zero at the

fixed point.

Example 4 Newton’s Method.

g(x) = x − f(x)

f ′(x)

g′(x) =
f(x)f ′′(x)

(f ′(x))2

Notice that g′(p) = 0 provided that f ′(p) 6= 0. Hence, Newton’s

Method satisfies the derivative condition.
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Example 5 Use Newton’s Method to find the roots of

f(p) = p3 − p2 − p + 1 = 0.

Applying the formula

pn+1 = pn − f(pn)

f ′(pn)
= pn − p3

n − p2
n − pn + 1

3p2
n − 2pn − 1

starting from p0 = 1.1, we find

p0 p1 p2 p3 p4 p5

1.1 1.05116· · · 1.02589· · · 1.01303· · · 1.00653· · · 1.00327· · ·

which is very slow (LINEAR!) convergence to the root (which is 1).

WHY ?
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In Newton’s Method we need f ′(p) 6= 0 to obtain quadratic

convergence. Notice that

f ′(p) = 3p2 − 2p − 1|p=1 = 0.

Hence, the theorem does not hold. Moreover, factoring f

f(x) = (x − 1)2(x + 1),

we see that x = 1 is a zero of multiplicity 2.

Definition 3 A solution p of f(x) = 0 is a zero of multiplicity m

of f if for x 6= p, we can write f(x) = (x − p)mq(x), where

limx→p q(x) 6= 0.

• Simple zeros are those that have multiplicity one.

• Newton’s Method can only be applied to simple zeros of a

function.
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• Identification of the multiplicity of a zero is often made easier by

the following two theorems:

Theorem 9 f ∈ C1[a, b] has a simple zero at p in (a, b) if and only

if f(p) = 0, but f ′(p) 6= 0.

Theorem 10 The function f ∈ Cm[a, b] has a zero of multiplicity

m at p in (a, b) if and only if

0 = f(p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p), but f (m)(p) 6= 0.

• We want to obtain quadratic convergence with Newton’s Method

for multiple roots. One approach is to define a function

µ(x) =
f(x)

f ′(x)
.
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Assume that p is a zero of multiplicity m, i.e., f(x) = (x − p)mq(x)

where q(p) 6= 0. Then

µ(x) = (x − p)
q(x)

mq(x) + q′(x)(x − p)
.

Hence, µ(p)=0, but

q(p)

mq(p) + q′(p)(p − p)
=

1

m
6= 0,

and p is a zero of multiplicity 1 of µ(x).

Substituting µ(x) into Newton’s Method gives the iteration

function

g(x) = x − µ(x)

µ′(x)
= x − f(x)f ′(x)

(f ′(x))2 − f(x)f ′′(x)
. (6)
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Advantages. Provided g satisfies the necessary continuity

conditions, we will get quadratic convergence regardless of the

multiplicity of the zero of f .

Disadvantages. (1) Need f ′′; (2) More calculations to evaluate g;

(3) Possibility of serious cancellation in the denominator.

Example 6 Back to finding a root of p3 − p2 − p + 1 = 0 (See

Example 5). Applying (6) with p0 = 1.1 yields

p1 = 0.997735 · · · , p2 = 0.999999 · · ·

47



'

&

$

%

Accelerating Convergence

• Given a linearly convergent sequence, we want to speed up

convergence.

Aitken’s Method. Assume that the sign of pn − p, pn+1 − p, and

pn+2 − p agree, and that n is sufficiently large so that

pn+1 − p

pn − p
≈ pn+2 − p

pn+1 − p
.

Then

(pn+1 − p)2 ≈ (pn − p)(pn+2 − p)

p2
n+1 − 2pn+1p + p2 ≈ pnpn+2 − pnp − ppn+2 + p2

(pn+2 − 2pn+1 + pn)p ≈ pnpn+2 − p2
n+1.
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Therefore, p ≈ pnpn+2 − p2
n+1

pn+2 − 2pn+1 + pn
. Adding and subtracting p2

n and

2pnpn+1 to the rhs and grouping terms appropriately yields

p ≈ pn −
(

p2
n+1 − 2pnpn+1 + p2

n

pn+2 − 2pn+1 + pn

)

.

The corresponding sequence

p̂n = pn −
(

p2
n+1 − 2pnpn+1 + p2

n

pn+2 − 2pn+1 + pn

)

= pn − (∆pn)2

∆2pn
(7)

is known as Aitken’s Method.

Remark 3 Aitken’s Method constructs the terms in order

p0, p1 = g(p0), p2 = g(p1), p̂0 = {∆2}(p0),

p3 = g(p2), p̂1 = {∆2}(p1)

where {∆2} indicates that (7) is used.
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Theorem 11 Suppose that {pn}∞n=0 is a sequence that converges

linearly to the limit p and that for all sufficiently large values of n

we have (pn − p)(pn+1 − p) > 0. Then the sequence {p̂n}∞n=0

converges to p faster than {pn}∞n=0 in the sense that

lim
n→∞

p̂n − p

pn − p
= 0.

Steffensen’s Method. A modification of Aitken’s Method. In

Steffensen’s Method, one restarts the iteration with the improved

value as soon as it becomes available.
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The method constructs the same first four terms p0, p1, p2, p̂0 as in

Aitken’s Method. However, it then assumes that p̂0 is a better

approximation to p than is p2, and applies fixed-point iteration to

p̂0, instead of p2. The sequence generated is

p
(0)
0 , p

(0)
1 = g(p

(0)
0 ), p

(0)
2 = g(p

(0)
1 ), p

(1)
0 = {∆2}(p(0)

0 ), p
(1)
1 = g(p

(1)
0 ), . . .

Theorem 12 Suppose that x = g(x) has the solution p with

g′(p) 6= 1. If there exists a δ > 0 such that g ∈ C3[p − δ, p + δ], then

Steffensen’s method gives quadratic convergence for any

p0 ∈ [p − δ, p + δ].
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Zeros of Polynomials

• A polynomial P (x) ∈ � [x] of degree n has the form

P (x) =
n∑

i=0

aix
i = anxn + an−1x

n−1 + · · · + a1x + a0,

where ai ∈ � , an 6= 0.

• We want to compute the zeros of polynomials.

Theorem 13 Fundamental Theorem of Algebra. If P (x) is a

polynomial of degree n ≥ 1 with real or complex coefficients, then

P (x) = 0 has at lease one (possibly complex) root.
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Corollary 2 If P (x) is a polynomial of degree n ≥ 1 with real or

complex coefficients, then there exist unique constants

x1, x2, . . . , xk, possible complex, and unique integers

m1, m2, . . . , mk such that
∑k

i=1 mi = n and

P (x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)mk .

Corollary 3 Let P (x) and Q(x) be polynomials of degree at most

n. If x1, x2, . . . , xk, with k > n, are distinct numbers with

P (xi) = Q(xi) for i = 1, 2, . . . , k, then P (x) = Q(x) for all values

of x.

• We want to use Newton’s Method to locate the approximate

zeros of P . It will be necessary to evaluate P and its derivative at

specified values. We now direct our attention to efficient methods

for this task.
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Theorem 14 Horner’s Method. Let

P (x) = anxn + an−1x
n−1 + · · · + a1x + a0.

If bn = an and

bk = ak + bk+1x0, for k = n − 1, n − 2, . . . , 1, 0,

then b0 = P (x0). Moreover, if

Q(x) = bnxn−1 + bn−1x
n−2 + · · · + b2x + b1,

then

P (x) = (x − x0)Q(x) + b0.
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Example 7 Use Horner’s method to evaluate

P (x) = 2x4 − 3x2 + 3x − 4

at x0 = −2.

x0 = −2 a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4

b4x0 = −4 b3x0 = 8 b2x0 = −10 b1x0 = 14

b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

Hence,

P (x) = (x + 2) (2x3 − 4x2 + 5x − 7)
︸ ︷︷ ︸

Q(x)

+ 10
︸︷︷︸

P (−2)

,

and P (−2) = 10.
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• For the computation of P ′(x0), since P (x) = (x − x0)Q(x) + b0,

P ′(x) = Q(x) + (x − x0)Q
′(x), P ′(x0) = Q(x0).

Hence, P (x) and P ′(x) can be evaluated in the same manner.

Example 8 Compute P ′(−2) for the polynomial P (x) in
Example 7.

x0 = −2 2 -4 5 -7

-4 16 -42

2 -8 21 -49

Hence, Q(−2) = P ′(−2) = −49.
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Deflation. A procedure for computing the real zeros of polynomials.

Let x̂1 be an approximate root of P (x), i.e., P (x) ≈ (x − x̂1)Q1(x).

Using Newton’s method, one computes another root of P (x) by

computing a root of Q1(x). This procedure is applied repeatedly.

After k steps,

P (x) ≈ (x − x̂1)(x − x̂2) · · · (x − x̂k)Qk(x).

Problem. Inaccurate results. An approximate zero x̂k+1 of Qk does

not in general approximate a root of P (x) = 0.

A cure. Use the reduced equations to find approximations

x̂2, x̂3, . . . , x̂k to the zeros of P , and then improve these

approximations by applying Newton’s Method to the original

polynomial P (x).
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Remark 4 If the initial approximation using Newton’s Method is

a real number, all subsequent approximations will also be real

numbers. If the initial approximation is a complex number, and all

computations are done using complex arithmetics, all subsequent

approximations will also be complex numbers.

Theorem 15 If z = a + bi is a complex zero of multiplicity m of

the polynomial P (x) with real coefficients, then z̄ = a − bi is also a

zero of multiplicity m of the polynomial P (x), and

(x2 − 2ax + a2 + b2)m is a factor of P (x).
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Müller’s Method

• An extension of the Secant method.

• Müller’s method uses three initial approximations, x0, x1, and x2,

and determines the next approximation x3 by considering the

intersection of the x-axis with the parabola through (x0, f(x0)),

(x1, f(x1)), and (x2, f(x2)).

Consider the quadratic polynomial

P (x) = a(x − x2)
2 + b(x − x2) + c

that passes through (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)). The

system

f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c

f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c

f(x2) = a · 02 + b · 0 + c = c
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yields

c = f(x2)

b =
(x0 − x2)

2(f(x1) − f(x2)) − (x1 − x2)(f(x0) − f(x2))

(x0 − x2)(x1 − x2)(x0 − x1)

a =
(x1 − x2)(f(x0) − f(x2)) − (x0 − x2)(f(x1) − f(x2))

(x0 − x2)(x1 − x2)(x0 − x1)
.

To determine x3, we apply the formula

x3 − x2 =
−2c

b ±
√

b2 − 4ac
.

In Müller’s method, the sign is chosen to agree with the sign of b.

Chosen in this manner, the denominator will be the largest in

magnitude and will result in x3 being selected as the closest zero of

P to x2. Thus,

x3 = x2 −
2c

b + sgn(b)
√

b2 − 4ac
.
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