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Overview '

e Numerical Differentiation
e Richardson’s Extrapolation

e Numerical Integration
e Elements of Numerical Integration
e Composite of Numerical Integration
e Romberg Integration

e Adaptive Quadrature Methods
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Numerical Differentiation.

Problem. Given
f: R— R,

X0y L1y Ty, T; €R,
compute

f/(ZCZ'), 1= O, 1, e, M.
Main tool. Lagrange interpolating polynomials.

Issues to look at. Approximation, truncation error, effect of

round-off error.
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/Lagrange Interpolating Polynomials - a Review \I

Theorem 1

f e a,b]

Va € la,b], 3&(x) € (a,b) s.t.
T, X1, ..., Tn, T; € |a,b] = _ P(z) + R(x)
v # @5 for i # ] , Jle) = P+ it

where P(x) is the Lagrange interpolating polynomial
P(z) =)  fzx)Li(z) = f(wo)Lo(x) + -+ f(wn)Ln(2),
k=0

and R(x) is the remainder term

_ [ (E(2))
R(x) = (nt D) (x —z0)(x —2x1) - (T — ).
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‘Numerical Differentiation — Main Idea'

) (

T T ... Xp f(x) = P(x) + R(x)
l l L =3 fle)=PFP(z)+ R (»)
flxo) flzr) ... flan) ) (@) = P'(x) + R ()

A special case. The nodes xq, x1,...,x, are equally spaced, i.e.,

r1=x9+h, xo =29+ 2h,...,2; =20 +1h,..., T, = 0 + nh.
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Numerical Differentiation — (n + 1)-Point Formula

S flan) L) + ETT0 0] iy g,

=
&
[

P (n+1)!

F@) = Y St + 0, (LI m I o)

(2= 20) (@ =2n) |
DL (1 (@),

Hence, for 0 < 5 < n,

S ()
fizy) = l;f(xk)l;k(mj) + (n+1)

- /




4 N\
2-Point Formula '

For xqg, x1 = x¢ + h, it follow from (1) that

f(xo) = flxo)Ly(zo) + f(21)L](20) + f”(g(q;)) (o — 1)
= o) flan) D)
o I1 I o
o f(xO“i_h)_f(xO) h 7
= ; —5f (£)- (2)

If h >0 = forward-difference formula.

If h < 0= backward-difference formula.

- /
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2-Point Formula — an Examplel

Let f(x) =1In(x), and x¢o = 1.8. The forward-difference formula

F(L.8+h) — f(1.8)
h
is used to approximate f’(1.8) with error

Rf @1 _ B |n
2 262 = 2(1.8)2

where 1.8 < & < 1.8+ h.
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/ 3-Point Formula I

For given xg, x1, T2, it follow from (1) that

Fla) = floo) (o2 ) o) (ol

(180—561)(560—562
20;—To—x1

(r2—w0)(T2—21)

f(x2) (

for each j = 0,1, 2, where ¢; indicates this point depends on z;.

Equally-spaced nodes. For &y between xy and z¢ + 2h, and
&1 between xg — h and xg + h:

-

Flao) = o (~3f(o)t4f (zoth)—f(xo+2m) + o 1 (€y),
Fleo) = oo (Flao+h) — fao —h) — = 1),

)+ 506 TI (mman.

(4)
(5)

/
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3-Point Formula — an Examplel

Use the most appropriate three point formula to determine
approximations that complete the following table:

r f(@) F (@)

1.1 9.025013 17.769705
1.2 11.02318 22.193635
1.3 13.46374  27.107350
1.4 16.44465 32.510850

/N
i
N—r

1) R s (=3£(L1) +4£(1.2) - f(1.3)) = 17.769705
f(1.2) 2 2(01 F(f(1.3) = f(1.1)) = 22.193635
f'(1.3) 2 2(01 i (f(14) = f(1.2)) = 27.107350
f(1.4) & 2(_—10_1)(—3]“( 4)+4f(1.3) — f(1.2)) = 32.510850

~
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‘S—Point Formula — Remarks'

e At the end points, we must use one sided differences.

e In the interior, we use centered differences. They have a smaller
error constant when f is smooth and require fewer operations to

compute.

-
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4 N\
5-Point Formula '

Centered differences. For & between g — 2h and xg + 2h:

1
20 ¢

f(zo +2h)) + g—;f("’)(ﬁ). (6)

f’(fo) — f($0 — 2h) — Sf(ﬂjo — h) + 8f(33’0 + h)—

One-sided differences. For & between xy and xg + 4h:

Fleo) = o (~25f(wo) + 48 (w0 + h) — 36 (xo +2h)

161(r0-+3) — 3w+ 4) + 590, (1

- /
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Higher-Order Derivatives I

Consider finding the second derivative of f:

1. expand f in a third Taylor polynomial about a point z¢, and

2. evaluate at xg + h and xg — h:

flaoth) = f(ro)tf (wo)hts " (wo)h®+= " (wo)h+ o= fD(€nh? (8)

flao—h) = flwo)—f (wo)hto I (wo)h? — < f" (wo)hS+ o F (€ 1)h (9)
where xg —h < &1 < x9 < &1 < g + h.

LU flawoth) + fwo—h) = 2/ (o) +1" (w05 (£ (E0)+FD (€-1))h!

. /
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Hence
F'(e0) = 15 (o0 — ) = 2f(z0) + F (w0 + 1) -
;_4(]@(4) +f(4) ) (10)

)

e Suppose /) € Cleo —h,zo +h] | 1y _
= L (f® (&) + fD(e_y)) | = K E(E18)

(4) —
between f(4)(§1) and f(4)(§_1) s.t. 1Y) =K.
By (10),

—

/

£ (o) = 5 (Flo — B) — 2 (wo) + Flawo +h)) — 12 FD(E), (1)

for some &, where g — h < & < xg + h.

. /
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Effect of Round-Off Error'

Consider the centered-difference 3-point formula (5):

/(o) = 5 (flwo +h) — flao — b)) - = O (&)

~

2h
Let
fzo+h) = flzo+h)+e(zo+h)
fmo—h) = f(zo—h)+e(zo—h).
Then
F h) — f(xo — h h) — —h) h?
f/(ZCo)—f(xO + )th(ﬂﬁo ) _ 6(330 + )2h6(x0 )_ . f(3)(§1)

/
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If
+ h)| < 2
\e(:co >| ‘ — Errgps < ¢ + h—M
f3 <M 6
Pa)N = (£)
§) h

To reduce the truncation error, h2M /6, we must reduce h.
However, as h is reduced, the roundoff error €/h grows. In practice,
it is seldom advantageous to let h be too small since the roundoft

error will dominate the calculations.

Remark 1 Similar difficulties occur with all differentiation

formulas, and numerical differentiation is unstable.

. /
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‘Richardson’s Extrapolation I

Suppose

M — Nl(h) =K1h+K2h2—|—K3h3—|—“-, K, € R. (12)
~ .~ - _
exact  computed truncation error

Remark 2 The truncation error is dominated by K1h when h is

small — O(h) approximation.

Goal. Obtain higher order approximations, e.g., O(h?), O(h3), ...

. /
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O(h?) Approximation

2(13)-(12) \(Nl (g) + (Nl (g) — NUL)))J+

N2 (h)
h? h3
Ko ——h? )+ K3 — —h°
2 ( 5 ) + I3 ( 1 ) +
Hence,
K 3K
M = Ny(h) — 22 h? — 43 hd —

-

Note. To compute No(h), one needs Ni(h) and Ni(h/2).

~

h h R\ 2 A\ °
v BN <§> e (5) K (5) LK, (§> +o(13)

(14)

18



O(h?®),0(h*),O(h®) Approximations

To obtain higher-order approximations, repeat the same process.

O(h?) : Set

Ny = Ny (g) N NQ(h/222)_—1N2(h).

K
M:Ng(h)+?3h3+...

h) o Na(h/2) = Ny(h)

N, — Na [ 2
4 3(2 SRR

N5 = N, (g) n N4(h/;)_—1N4(h).

19




4 N

O(h!) Approximation

In general, if M can be written in the form

m—1
M = Ni(h)+ Y Kb +O0(h™)

j=1
= Ni(h) + EKih+ EKoh?* + -+ Kyt B + O(R™),

then for each j = 2,3,...,m, we have an O(h’) approximation of
the form

N;j(h) = Nj- <é> + Nj_l(};éa__]fj_l(h)'

20
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O(h?)

Na(h)
Na(h/2)
No(h/4)

error for a formulas has the form

m—1
> K;h% + O(h™m),

g=1

derived from lower order approximations:

O(h?)

N3 (h)
N3(h/2)

for K; e Rand oy < ag <--- < ap.

Remark 3 Higher order approximations can be systematically

O(h%)

Ny(h)

~

Remark 4 Extrapolation can be applied whenever the truncation

/
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Richardson’s Extrapolation — an Example I

The centered difference formula to approximate f'(xq):

(3) (5)
(f(zo+h) = f(xo — h)l\—f G(xO)Jh2jf 12(;301

N1 (h) K K4

f'(zo) = Ri_...

S
2h

2 4
(1:52 f'lzo) = N (g) _ ;L_4f(3)(x0) _ %f@(fﬂo) — ... (16)

4(16)j—(15) F(z0) = Ny (ﬁ) 1 Ny (h/2) — Ni(h) +1}g40f(5)(x0) 4.,

3

\ - 7
~"

N3 (h)

(17)

. /

22




-

Continuing this procedure gives, for each i = 2,3, ..., an O(h*)
approximation
_ h\ | Nj—1(h/2) — Nj_1(h)
Nj<h) = Nj—l (5) -+ 4j—1 1 .
Suppose g = 2.0,h = 0.2, and f(x) = ze®. Then
N1(0.2) = O%l(f(zz) — £(1.8)) = 22.414160
N1(0.1) = 22.228786
N1(0.05) = 22.182564
N1(0.2)
N1 (0.1) N2(0.2) = N1 (0.1)—{—

(N1(0.1) — N1(0.2))/3

N1(0.05) | N2(0.1) = N1(0.005)+ | N3(0.2) = N2(0.1) 4 J2(0-1_N2(0.2)

15

(N1(0.05) — N1(0.1))/3

/
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4 N

Remark 5 Extrapolation can produce high order approximations

with minimal computational cost.

Remark 6 It is important to be aware that as higher order
extrapolations are used, more roundoff error will be generated. We
may also increase the likelihood of numerical instabilities in some

situations.

. /
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To compute

write

Hence,

Main Tools.

‘Numerical Integration I

I, = / () d,

f(x) = Py(x) + Ry(x), P,(x) € Rlz].

Ie:/aan (z) d:z;+/abRn (z) dz .

\ . 4 A\ . 7

I, E

(a) polynomial interpolation, Taylor’s theorem,

\(b) piecewise approach + (a).

~
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Trapezoidal Rule I

An Appromma}l?-g of t}1e Integral of

Usl?mnt eﬁ rgr\é%o[il 4Le
Approximate VaIu 1.386294361

Of 15 2 25 3 35
| Area: 1.875000000

f(x)

26




Let

Then

where

Hence,

=y

[y

=
|

f(&(x)) (@ — o) (x — 1),

[ 1@)ae =25t + sy + [

Ry (x)dz.

27




/To approximate the error E, we need the

Theorem 2 Weighted Mean Value Theorem for integrals.
h € Cla,b] ‘ 3c € (a,b) with
Riemann integral of g exists  —> f;h(:c)g(:c)daz —
g(x) does not change sign on |a,b] | h(c) f;g(x)da:.
1 . 1/
E — 5/ f (f(x)zga:—xo)(:v—:clzdac
Hitg) \f: ;
1 1
MY 21©) [ @ w0)(w = an)de, €€ (mo0)
h3 1/
= e
’ h h o,
Hence, [ f(@)dz = 5 (f(@0) + f(a) = 351"(©)

28



Simpson’s Rule I

An Appromma}l?-g oft e Integral of
on theﬁ ervai(

Appro%%g?emﬂsoq 35(%]@%4361

0.8-
0.6-
0.4
0.2-

0.2

Area: 1.425000000

X

29



4 N

Let xo = a, x1 =a-+h, x9 =0, where h = b;a.
By Taylor’s theorem,
f(r) = Ps(x)+ R3(x), where
P3(z) = f(z1)+ fl(z1)(z —21) +
Py 2 -

@) (£(p
R3(CI3) _ f §i< )) (iE . 5131)4.

Hence,

2 h3 x2 £(4) T
/x fa)ds = 2 o) + 5 o) + / | L) (0o yia.

A\ . 7
Ve

Eq

(18)

. /
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/ fla

-

By (11),

f(x1) = 72 (f(wo) — 2f (1) + f(x2)) +t 15 f(4) (&2)-

By (18), (19), and (20),

fW(&)

/ e a1)tda, & € (ah)
FA(€) 15

(F (o) +4F (@) £ (22)— o (7 (€2)

Wl wlT

~

(19)
(20)

1 1
=€)

(F (o) +4F (@) f (22) o FD €, € € (z0,2)

/




‘Degree of Accuracy I

Definition 1 The degree of accuracy, or precision, of a quadrature
formula 1s the largest positive integer n such that the formula is

exact for =¥, for each k =0,1,...,n.

Remark 7 The Trapezoidal and Simpson’s rules have degrees of

precision one and three, respectively.

- /
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Let

‘Closed Newton-Cotes Formulas'

b—a

n

xo=a, T, =0, h = , T =x0+1th, 0 <1 <n.

Then

f@)de ~ / > L) f ()

n b

b

1=0

The formula is closed because the endpoints of the interval are

Qlcluded as nodes.

~
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/ Error Analysis I \

Theorem 3 Suppose that

Z&z‘f(ﬂfz‘)

denotes the (n + 1)-point closed Newton-Cotes formula with

xo=a, x,=0b, and h= b—a.
n
There exists £ € (a,b) for which
b n
/ f(x)dr = Zaif(ﬂfz') +
a i=0
n+3 f(n+2) n
L (g)/ t2(t —1)---(t — n)dt,
(n+2)! 0

an is even and f € C"?[a,b], and /

34




b n
[ f@de = Yt +

2 D) ()
(n+1)!

/nt(t—l)---(t—n)dt,

if n is odd and f € C""a,].

Remark 8 If n is even, the degree of precision if n 4+ 1, and the
error is O(h"*3).

If n is odd, the degree of precision if n, and the error is O(h™"2).

-

/
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4 N\
‘Some Common Cases'

n = 1. Trapezoidal rule

T 3
[ f@xde = 505w + 1)~ T 1©), w0 <€ <

n = 2: Simpson’s rule

To 5
[ 5@)n = 5 0) + 47) + Fa2)) — 57O, w0 < € < a2

n = 3: Simpson’s Three-Eighth rule

T3 5
[ #@rde = S (7o) + 3f(@0) + 36(w2) + F ) — o SOE).

where xg < & < x3.

. /
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Open Newton-Cotes Formulas'

For open Newton-Cotes formulas,

b—a
n -+ 2

r, =x0+1th,0<i:<n, xo=a+h, h=

Y

and , § b
/ f(x)dz ~ Zaif(:zji), a; = / L;(x)dx.
a i=0 a

Note that xg = a + h and z,, = b — h. The formulas are open
because the nodes are all contained in the open interval (a,b).

-
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/Error analysis. If n is even, the degree of precision is n + 1 and the\
error is O(h"13).

If n is odd, the degree of precision is only n and the error is only

O(h””).
Some common cases.

n = 0: Midpoint rule

[ 1@z =2ns(w0) + 5 11(©), € € ab)

n = 1:
b 3
[ #@)de = S (#lwo) + £an) + S, €€ (@b
n = 2:

b 5
[ f@)dz = 5 2 (w0) — ) + 26 (w2)) + 5 1O, €€ (b

. /
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Composite Numerical Integration'

Typically, we do not apply Newton-Cotes formulas to the interval
la, b] directly.

If we did, then high degree formulas would be required to obtain

accurate solutions.

However, we have already seen that even these high degree
polynomials often give an oscillatory (and inaccurate) interpolation
of high degree polynomials.

To avoid this problem, we prefer a piecewise approach to numerical

integration that uses low order Newton-Cotes formulas.

- /
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‘Composite Trapezoidal — an Illustration. \

1.0 1.0

8 8

6 6

4 4

2 2

1830 U1 @®5.0B5.0
.21 _.2]

Area: 1.875000000 ' Area: 1.393261030

X
—— ¥
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‘Composite Simpson — an Illustration'

1.0 1.0

8 8

6 6

4 4

2 2

1830 U1 @®5.0B5.0
.21 _.2]

Area: 1.425000000 ' Area: 1.386310344

X
—— ¥
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Composite Simpson’s Rule I

Divide the interval into an even number of subintervals, and apply

Simpson’s rule on each consecutive pair of subintervals.
Take h = (b—a)/n, z; = a+ jh. Then

n/2

/abf(a:)dx _ 21/; f(x)da

2j—2

n/2 5
= ) (g (f(z2j—2)+4f (T2j—1)+f(x25)) — g—of(4)(§j)>

j=1
n/2—1 n/2

= g(f(flfo)-l—? Z f(ij)‘HlZf(x2j—1)+f($n))+Ea

. /
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/ 5 n/2
ho
wmmﬁk~——§:ﬂ4@ Toj_o < & < x95, and f € C*[a, D).

71=1
To simplify E, we need the

Theorem 4 FExtreme Value Theorem (EVT)
If h € Cla,b], then C1,Cs € |a,b] exists with

h(C1) < h(x) < h(C3)  for each x € |a,b.

If f € C%a,b], then by the EVT

min £ (4) max £(4)
Jnin [(@) < L) < max [ ().

Sum over all j:
n/2
n

= (4) (4) o (4)
5 i V@ = 2 10E) < 5 ma fO)

-
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Multiply by 2/n:

n/2
()< = @ (g) < (4)
2in, 100 2 5316 < 10,
By the IVT, there is a u € (a,b) s.t.
n/2
FA(u Zf(4) £;).
Hence,
hn
E = A4
TN
_b—
_ (4)
180 F ()

44
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Remark 9 The subdivision approach can be applied to any of the

low order formulas. For example:

Theorem 5 Let f € C?|a,b],

_b—a

h

, and x; =a+ jh, foreachj=0,1,... n.
n

There exists a i € (a,b) for which the composite trapezoidal rule

for n subintervals can be written with its error term as

_b—a

()

b n—1
[ e =5 | 1@ +2 3 @) + 50

. /
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approximated by

‘ An Example I

Show that the error for composite Simpson’s rule can be

— = (f"(0) = [ (a))
1,5 n/2
—50 2. ()
j=1
4 /2
1802 Foe
b
—%40 FH(2)dw
h? “
s (7(0) ~ £ (a)

46
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Recall. The Riemann integral of the function f on the interval [a, b]

is the following limit provided that it exists:

b n
/a f(x)dx = lim iy ; f(z)Ax;

max Ax;

where the numbers
satisfy

and where

ACBZ‘ = X; — Li—1

and z; is arbitrarily chosen in the interval [z;_1, ;] for 1 <i < n.

. /
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‘Composite Integration — Stability'

Assume that f(x;) is approximated by f(z;), and that

~

f(x;) = f(x;) +e;, foreachi=0,1,...,n,

where e; denote the roundoff error associated with using f (x;) to
approximate f(x;). In the Composite Simpson’s rule:

7 n/2—1 n/2
e(h) — g €0 + 2 Z €25 + 42 €251 + En
7=1 7=1
n/2—1 n/2

IA

h
3 | leol +2 > el +4) leajo1| + len]
j=1 j=1

48



4 N

If the roundoft errors are uniformly bounded by €, then

e(h)g2(64—2(%—1)64—4(%)6—%6) = nhe.

Since nh = b — a,
e(h) < (b—a)e,

which is independent of h and n. Hence, even though we may need
to divide an interval into more parts to ensure accuracy, the
increased computation does not increase the roundoff error. This

implies that the method is stable as h approaches zero.

. /
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Romberg Integration I

e Use the Composite Trapezoidal rule to obtain preliminary

approximations;

e Apply the Richardson extrapolation process to improve the

approximations.

-
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Step 1: Preliminary Approximations'

Trapezoidal rule with m subintervals:

[ f@ae — Z(f<a>+f<b>+2zf<xj>) -

b—a
12
b—a
m

h2 " (w),

, Tj=a+jh, 7=0,1,...,m.

51



/Initial Approximations Ry 1’s.

e Number of subintervals:

mq :1, m2:2, m3:4, c e ey ngQn_l
e Step size hy corresponding to mg:
b—a b—a b—a b—a
hi=b—a, hy = hy = hi = = :
1 a, N2 9 s 103 A s Tk m 2k:—1

e Trapezoidal rule becomes:

b 3 ok—1_1q

k
[ @iz = F 5@+ 10)+2 > S ity
Rya
b—a 2 ¢l

-
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4 N

Riyv = (@) + 70) = 5% (@) + 1(0)):
Row = "2(f(a) + J(0) + 27 (a+ ha)) = & (Rus + haflat ho));
Roi = 5(Ras+ha(f(athe)+ fla+3hs)))

o o

ok—2
1 .
Rk,l — 5 (Rkl,l + hr_q Z f(CL + (2’& — 1)hk)> .

i=1
Example 1 Perform the first step of the Romberg integration
scheme for approximating / sin(x)dx with n = 6:
0

. /
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Area: 1.570796327' Area 1.896118898

Area: 1.974231602' Area: 1.993570344 Area 1.998393361

54




/ ‘Step 2: Richardson Extrapolationl \

e It can be shown that

b o0 00
/ f(x)de — Rpy =Y K:hi’ = Kby + Y Kby, (21)
a =1 1=2

where K; is independent of hy, and depends only on f(2=1D(q)
and {21 (b).

e Replace hy by hii1 = hy/2:

’ K;h?
/ f(:r;)da: — sz—i—l,l = ZK hkz—}—l Z 22z

1=1

thg — Kh2z

. /
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apply Richardson extrapolation to these values. Continue this
notation, for each £k =2,3,4,....,n,and j =2,...,k, an

O (hij ) approximation formula is defined by

Ry j—1— Ri—1,j-1

Ry ;= Ry j—1+ YT —

56




Rn,l Rn,Z Rn,3 Rn 4 .- Rn,n

Y

A typical stopping criteria. Both |R,,—1 n—1 — Ry, »| and
|Ry—2n—2 — Ry—1n—1] are within a desired tolerance.

Example 2 Given the initial approximations Ri 1, 1 <k <6 in
Example 1, see textbook (Table 4.10, p.210) for the Romberg table.

. /
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‘ Adaptive Quadrature I

e Composite quadrature rules necessitate the use of equally

spaced points. This does not take into account that some
portions of the curve may have large functional variations that

require more attention than other portions of the curve.

e It is useful to introduce a method that adjusts the step size to
be smaller over portions of the curve where a larger functional
variation occurs. This technique is called adaptive quadrature.

e We will discuss an adaptive quadrature based on Simpson’s
rule. The other composite procedures can be modified in a

similar manner.

- /
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Adaptive Quadrature: a Sketch' \

b
Problem. Given I, = / f(x)dzx. Approximate I. to within a

specified tolerance ¢ > 8
1. Simpson’s — S(a,b),
2. Composite Simpson’s — S(a, (a +b)/2), S((a +b)/2,b),
3. Using S(a,b), S(a, (a+b)/2),S((a +b)/2,b), check if

Err s =

Ie—(5<a,a;—b +S<a;b,b>>|<e.
(a) Yes: Done.
(b) No:

i. a:=a,b:=(a+b)/2. Go tostep 1. Check if Err,ps < €/2.
ii. a:=(a+0b)/2,b:=b. Go to step 1. Check if Err,ps < 6/2/
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/ ‘Fill in the Details' \

e Apply Simpson’s rule with step size h = (b — a)/2:

/ f(@)dz = S(a, b)——f<4>< ), we(ab),  (23)
S(a,b) = 5(f(a)+4f(a+h)+f))

e Apply composite Simpson’s rule with n =4, h = (b —a)/4:

[ = s (o) s (0) 5 (5) o
S( a?) _ (f(a)+4f<a—l—g>+f(a+h)>’
S(a—2|—b b) (f(a+h)+4f (a+ %) +f(b)>>

\Where ii € (a,b). /
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ASSUMING THAT pu = [1, it follows from (23) and (24) that

b
/a f(x)dx — S (a, aT—I—b) - S (%i_b,b)
1

a+b a+b
5 S(CL,b) — S (CL, T) — S (T,b)

\ - 7

a4
Y

ds
If dS < 15¢, then Err,,s < €, and

S (a,a——i_b) + S (a——i_b,b>
2 2

is assumed to be a sufficiently accurate approximation to I.

-

61



