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Abstract

Is it feasible for middle school students to use

component-oriented software for the construction of

their own learning resouces? In order to explore the

potential of a new technology, a program of guided col-

laboration between students at Bowen Island near Van-

couver Canada and researchers at Simon Fraser Uni-

versity was established. Bridging methodologies were

developed to overcome the lack of maturity in the soft-

ware in order to predict its feasibility as an in-class

resource for teaching mathematics.
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JavaBeans(TM), collaboration, telelearning, applets, par-
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1 Introduction

The goal of this project was to test whether cer-
tain educational technologies currently under devel-
opment would be feasible as constructionist resources
for teaching mathematics. The results were intended
to de�ne the direction for further research and indicate
how best to use these technologies in the classroom.
As the software were not yet fully functional, the chal-
lenge was to support a \premature adoption" process
in a �eld trial, in this case, at a small private middle
school. The students were engaged in a \guided col-
laboration"; they were encouraged to reect on their
use of the technology and to aid the researchers in pre-
dicting how e�ective the technology would be when
completed.
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The central feature of the technology under review
is its use for component-based construction of interac-
tive programs; it allows relatively inexperienced non-
programmers to build their own tools for exploring
mathematical concepts. However, at the time of im-
plementation the construction tools didn't yet support
use by students. Consequently, the functionality of
the planned toolset was to be assessed by having an
experienced teacher/researcher hand-build a set of in-
terfaces focussed on certain mathematical concepts.
The students were subsequently challenged to apply
these concepts by building interfaces of their own in a
facsimile construction environment.

Of equal importance was the question of whether
middle school students would be able to employ such
a system e�ectively once it reached maturity; they
would have to learn new ways of relating to software,
ways that might be more typical for a programmer
than a user. Consequently a participatory design sce-
nario was implemented. The main idea of participa-
tory design is to encourage active participation of the
users themselves in the design of technology, and thus
empowering the users [1]. Through the low-tech design
tool simCHET, the students contributed to the devel-
opment of the design and functionality of the planned
toolset.

Engaging children in the design of new educational
technologies has become the focus of several recent
studies [6, 8] as has engaging teachers [4]. It a�ords an
opportunity for researchers to gain a fresh perspective
on their work and how children perceive and interact
with their environment. Many of these studies have
involved children ages 5 to 10 and have employed ap-
proaches such as participatory design, technology im-
mersion, and contextual inquiry. Similar ideas were
adapted for use in this project.



2 Telelearning, Information

Technology and Ethnography

The project arose out of a convergence of several
groups' interests. Initially proposed as a �eld testing
project for a telelearning development programme, it
eventually acquired a multi-facetted character reect-
ing the goals of each group.

2.1 PolyMath Development Group

The PolyMath Development Group (PDG)1 working
within the Centre for Experimental and Construc-
tive Mathematics (CECM) is involved with the Tele-
Learning - National Centre for Excellence (TL-NCE).
Its contribution to TL-NCE is a project known as
M

3Plexus, aimed at delivering live mathematical doc-
uments via networks. The underlying mechanisms, all
falling under the general umbrella of PolyMath, are
being designed for use in both research and education
in the mathematical sciences. The PDG is dedicated
to exploring the technical potential and the social con-
sequences of emerging network technologies.

Most of the systems are being constructed us-
ing Java(TM)2 and related resources. Some of
them employ a modular component-based approach
to rapid tool prototyping and tool construction us-
ing JavaBeans(TM)2and OpenMath-based systems.
These systems are expected to be applicable to a wide
range of network-aware resources, from large scale dig-
ital publishing to tools for researchers to collaborative
materials constructed for and by students.

With a view to exploring the constructionist po-
tential of their component-based technology, the PDG
launched this project. It was anticipated that a prop-
erly focussed set of tools could be utilized by students
and teachers like a software version of Lego, support-
ing them to create their own learning resources and
opportunities. Although the PolyMath technologies
were still in the early stages of development, it was
felt that a number of important issues should be ad-
dressed early on. In particular, the PDG needed to
know:

� How easy would it be for non-programmers (like
many teachers and students) to use the JavaBeans
component approach to constructing resources?

� Would such systems be exible enough to support
the evolving and varying demands of teachers or

1Trevor Bradley, Carlton Chan, Jen Chang, Paul Irvine and

Terrance Yu as well as authors J�orgenson, Sinclair and Braham
2Trademark Sun Microsystems

would they instead constrain them?

� Are the OpenMath JavaBeans too specialized?
How will they be used in contexts other than the
ones for which they were designed?

� What new teaching methodologies are engen-
dered and/or enforced as a result of using this
technology? Likewise what kind of potential
might this technology have for delivering a more
integrated curriculum?

2.2 Island Paci�c School

The Island Paci�c School is a small community-based
middle school situated on Bowen Island near Vancou-
ver, Canada. It o�ers a full curriculum to students
in grades 7 through 9 with an emphasis on diverse
and enriched experiential learning. Author Sinclair is
the mathematics and information technology teacher
at IPS as well as a researcher at the CECM.

IPS was interested in working with the PDG for
several reasons. Foremost, it o�ered a unique op-
portunity for the school to get involved in academic
research; as a private community school, it has al-
ways made an e�ort to bring learning opportunities
of all sorts to the students. As well, an informa-
tion technology component had recently been added
to the province of British Columbia's curriculum and
the school was ready to set up a networked lab and de-
velop a strong IT program. This collaboration would
give students the opportunity to work with advanced
network technologies and to reect and voice opinions
on the perceived e�ects that they have on their edu-
cation.

Island Paci�c School was also committed to inte-
grating technology into other classes such as mathe-
matics. Working with a mathematics research centre
would enable IPS students to collaborate with math-
ematicians and access powerful on-line tools and re-
sources.

2.3 Assessment of Technology in Con-

text lab

The Assessment of Technology in Context (ATiC) lab-
oratory was established by author Balka at Simon
Fraser University, focussing on the uses of participa-
tory design and ethnographic methodologies. It had
only recently opened when they were approached to
participate in the project. The scope and require-
ments of the proposed study �t the lab's capacities
well and so it was viewed as a good choice for a �rst



project for ATiC. In addition, it presented a unique
opportunity to work across disciplines and to imple-
ment participatory design practices in a type of work-
place (a middle school) that had not been a focal point
of most other PD projects.

Subsequent discussions between members of the
PDG, IPS and ATiC indicated that there was a
good compatibility between the groups. A produc-
tive working relationship was quickly realized which
fueled the project's development and led to a ne-
gotiated agreement between ATiC and the CECM.
ATiC constructed an appropriate program for ethno-
graphic study and provided the necessary support
(ethics clearance, recording hardware like video cam-
eras, expertise, etc.); CECM provided funding for the
on-site ethnographer and managed the project itself.
The interaction between ATiC, PDG and IPS was
carefully delineated in a memorandum of understand-
ing [2].

3 OpenMath JavaBeans: Edu-

cational technology for math-

ematics

The technology being investigated uses Java to con-
struct components, known as JavaBeans, which can
be linked together to form applets. This would allow
non-programmers with limited familiarity with Java
to build their own tools and resources with minimum
e�ort. Each JavaBean has a particular functionality
and has speci�c ways of being connected to other Jav-
aBeans. The use of OpenMath supports functionali-
ties which are speci�c for mathematics. These Open-
Math JavaBeans form an object set which can be
reused to build a wide variety of tools.

3.1 Constructionism

Distributed object technologies are being investigated
by the PDG to see how they can support a construc-
tionist educational framework. Constructionism [11]
is a theory of learning which asserts the constructivist
theories of Jean Piaget that learners make their ideas
by constructing their own knowledge structures. To
this, it adds the notion that this kind of knowledge
building is particularily e�ective in a context where
learners are actively engaged in constructing some-
thing (such as sandcastles or computer programs) in
a social context to which they can attach personal
meaning [12].

Such a learning environment could be supported by
moving away from the existing rigid and drill-driven
educational software to a more exible component-
based toolkit. Students and teachers might then be
able to construct their own mathematical software for
learning. Java can provide resources which integrate a
broad spectrum of experimental and visual explorative
tools. Students can use these tools to make connec-
tions between di�erent mathematical representations,
to test relationships and discover patterns, and to an-
swer self-motivated questions. As students are explor-
ing and hypothesizing, teachers can concentrate on the
more subtle process of engendering experience and in-
tuition.

The networking capabilities of these distributed ob-
ject technologies also allow for synchronous learning
and building so that students can share their tools,
in real-time with classmates, teachers and researchers
all over the world. Whether they are building games
or solving problems together, it is believed that col-
laborative activities amongst students will engender
the deepest and most ful�lling learning; in this rich
and exible playground students can exercise their do-
ing/thinking/learning within a supportive social con-
text.

3.2 JavaBean components

Java currently holds the popular focus in the arena of
programming for network applications. It promises a
number of highly attractive features which include be-
ing platform independent, network aware, potentially
lightweight, robust, and increasingly Web-friendly.
Due to the intense interest the industry is showing in
this language, developments related to Java are evolv-
ing at a fantastic pace.

Recently JavaBeans were introduced as a standard
for a component-based architecture. Individual el-
ements o�ering speci�c functionalities can be con-
structed and then subsequently interconnected as de-
sired. Resembling a software version of Lego blocks, a
reliable and easy-to-assemble set of JavaBeans o�ers
a simpli�ed development process that can support its
use by non-programmers as well as experienced pro-
grammers.

The technology being studied in the project was
primarily a special set of JavaBeans, constructed to
support mathematics. The version of Java used was
v1.1 although at the time most publically available
Java-capable systems did not fully support v1.1 func-
tionality.



3.3 OpenMath standard

OpenMath is a standard for communicating mathe-
matical objects between computer programs. These
OpenMath objects are recursive data structures de-
scribing mathematical objects, from functions to data
sets to theorems. OpenMath is a general communi-
cations standard which supports the exchange of any
non-textual, non-image data. It is currently being in-
tegrated with MathML, one of the �rst of the Markup
Language extensions to be developed to deal with
mathematics presented on-line.

Original work by the PDG includes the develop-
ment of Java libraries implementing OpenMath ver-
sion 1.0. The current release of the libraries is version
0.5 early access release and was employed to create the
set of JavaBeans used in this project. Approximately
forty generic OpenMath JavaBeans were developed.

3.4 Development Tools

Most stages of the Java development in Phase II em-
ployed Java Development Kit (JDK) v1.1.5 and v1.1.6.
This required the use of less commonly available of
browsers and viewers. Applet construction was pri-
marily done using Beans Development Kit (BDK) v1.0
3. There were a number of distinct releases from
November'97 to March'98 which were used. BDK of-
fers a relatively simple Beans building environment
called BeanBox; this tool was crude and occasionally
behaved unpredictably. However it was one of the few
tools available which reliably produced applets that
worked satisfactorily.

JavaStudio v1.0 3o�ered the preferred component
construction environment. Its interface was most in-
tuitive and provided features that could be adapted
for use in the classroom. However it proved to have
several problems which could not be overcome until
late in Phase II including not producing working ap-
plets. Regardless, it is JavaStudio's graphic user in-
terface (GUI) which provided the model for part of
this project's assessment process (see section 5.2).

3.5 Browsers and Applet viewers

In order to deliver the OpenMath technology to the
classroom with supporting resources, browsers were
needed. Unfortunately not all of the popular browsers
were capable of handling JavaBeans or Java v1.1 ap-
plets. Microsoft's Internet Explorer v4.0 provided the
most reliable support. However it failed to work with
some of the later applets developed in Phase II, at

3Trademark of Sun Microsystems

which point the appletviewer from JDK v1.1.6 was
used. Using appletviewer discounted the use of sup-
porting HTML text and images in the lessons pre-
sented to the students.

4 Phase I: Foundations

The initial phase of the project was primarily fo-
cussed on laying the foundations for the second phase.
This included setting up the necessary software and
hardware at both the CECM and IPS, developing
the OpenMath JavaBean components, introducing the
students to the computing environment and various
educational resources, and normalizing the relation-
ship between IPS, the CECM and ATiC. This phase
was essential as it identi�ed a number of issues which
needed to be addressed before the PolyMath technol-
ogy could be introduced.

4.1 The hardware/software environ-

ment

As the school was relatively poorly equipped to begin
with, it purchased and installed an entirely new group
of PCs. This included four 166 MHz Pentium MMX
workstations with 17" monitors/32M RAM and a 180
MHz Pentium Pro server with 15" monitor and 64M
RAM. A 10bT Ethernet LAN was set up using Win-
dows NT for the workstation group. An ISDN line4

to the mainland was set up with some di�culty5, pro-
viding up to a 128 kbaud link. Considerable work was
required to regularize the networking (routing, e-mail,
Web servers, etc.).

One of the serious challenges to the project was
the installation and maintenance of a stable PC en-
vironment at the school. The CECM is primarily
a UNiX-based research group. While some signi�-
cant PC expertise was available during the project,
it rapidly became clear that the PC network software
presented unique challenges. After myriad reinstalla-
tions, workarounds and trials, a highly simpli�ed im-
plementation of Windows NT was settled on, foregoing
many of the features anticipated for use in the project.

4.2 Familiarization

Having dealt with the hardware and software is-
sues (many of which were recurring throughout the

4Made possible by a generous contribution from BC Tel Ad-

vanced Communication
5It is long distance from the mainland to Bowen Island but a

free local call in the other direction. This necessitated that the

ISDN channel always be opened from the Bowen Island side.



project), a process of acclimatization took place. Stu-
dents were excited by the presence of new resources.
Some time needed to pass before they would treat the
computers as everyday aspects of their learning envi-
ronment. As part of the introduction, they were ex-
posed to a wide variety of materials available on com-
puter for mathematics education. These included CD-
ROMs, Web pages, Windows-based programs, and
non-OpenMath applets.

4.2.1 Other available software

The students experimented with several notable re-
sources:

� MathProbe - a CD-ROM based mathematics dic-
tionary with interactive activities illustrating the
concepts being de�ned

� Logo - a well-known programming environment
which emphasizes basic logic command control

� Sophisticated on-line applets from university re-
search groups such as the Geometry Center6

With exposure to a broad spectrum of the available
resources, the students developed a mature point of
reference for their later exposure to the OpenMath
applets.

4.2.2 Limited computing resources

Perhaps more challenging than the software was the
di�culty adapting an environment designed for a
single person to work in groups. There were only
four functional workstations available to be shared by
twenty four students. Due to time constraints, this
meant that groups of at least two, and often up to
four, students would work together with a single com-
puter (Figure 1). This issue has been addressed in
recent studies [7, 13] using specially designed systems
which support multiple user control of a single pointer.
In the IPS context, users were left to negotiate use of
the resources and develop their own solutions.

4.2.3 On-line learning and estrangement

The students needed to adapt to the new techniques
being employed for teaching with the OpenMath Jav-
aBeans. While it seems self-evident that traditional
and technological methodologies for teaching mathe-
matics will share some aspects and be widely di�er-
ing in others, the students themselves needed to ad-
just their approach to the materials. They gradually

6See www.geom.umn.edu

Figure 1: Several students working together at a single
computer

learned how to use selected software, the Internet and
CD-ROMs to learn and explore mathematics. They
investigated di�erent ways in which they could express
their knowledge on a computer; from using word pro-
cessing programs to creating diagrams to making Web
pages in HTML. Most importantly, they became com-
fortable using the computer and con�dent in their own
abilities to navigate through and handle its di�erent
aspects.

4.3 Ethnographic study

The presence of the ethnographic team in the class-
room was yet another factor. The students were dis-
tracted by new faces, new behaviours, still and video
cameras, the unusual questions and the behavior of
the research team. This was accepted as part of the
ethnographic process. Once again, phase I provided
an opportunity for the students and ethnographers to
develop a normalized relationship.

5 Phase II: Transformations

Phase II was focussed on answering the question:

Can middle school students be reasonably ex-
pected to construct their own resources for
learning using a component technology ap-
proach?

Two possible barriers to success were:

� Limits of the technology - would it be able to
meet the requirements for building useful tools
and resources?

� Limits of the students - would they be able to
learn and employ the necessary skills to assemble
their tools?



In the case of the technology, it was not clear that
it would o�er su�cient depth and breadth of func-
tionality to ful�ll the needs of the students. Certainly
there were some strict limitations to the technology
in its current form; in part this was a consequence of
the relative instability of the underlying Java language
and the immaturity of the supporting development en-
vironment. There was also some speculation that the
OpenMath component set was not su�ciently compre-
hensive and would only be able to provide rudimentary
tools. Despite these issues, the objective would be to
identify the projected limits of a mature and fully im-
plemented set of OpenMath JavaBeans.

With regard to the students, it was important to
ascertain that students would be able to employ the
technology, mature or otherwise. The construction of
resources from components requires an understanding
of event-driven processes and an ability to visualize the
ow of information. These skills are usually acquired
through experience in programming and it was not
obvious that the students would be able to adapt to
the paradigm in a reasonable period of time.

5.1 Testing for the technology barrier:
Applets

The �rst stage was to support the creation of a set
of focussed resources by a model teacher. Under a
teacher-driven construction paradigm, we hoped to
show that the technology could be applied by a knowl-
edgeable educator. The lessons to be constructed
would be relatively shallow with regard to the infor-
mation to be delivered. In these simulated learning
contexts, the students would encounter familiar infor-
mation and then compare how and what they learned
with their prior experiences.

5.1.1 Implementation

The model teacher (author Sinclair) was enhanced in
the sense of having expertise and a technical skill
set beyond any to be reasonably expected from most
teachers. Consequently, she was able to cope with
problems, setbacks and other challenges in the class-
room which would have made progress impossible oth-
erwise. In addition, direct technical support was pro-
vided to handle critical problems encountered during
the resource development. Initially, PDG members
Trevor Bradley and Terrance Yu developed the Open-
Math JavaBeans and worked directly with the teacher;
Paul Irvine assisted with the PC network and soft-
ware installation. In later stages, Carlton Chan pro-
vided the JavaBeans support with additional PC sup-

Figure 2: Student Working with Applets

port from Angus McIntosh of Redesign. In this fash-
ion, the lack of on-line help, stability in the software,
supporting resources and facilitating environment was
compensated for.

A series of lesson plans were developed to teach
a speci�c set of mathematics concepts, in this case
transformations (e.g. translation, rotation, and reec-
tion). These geometric concepts were chosen in par-
ticular to take advantage of the visual and interactive
strengths of the technology. The lesson plans were cen-
tered around a collection of applets developed by the
model teacher. Each applet was developed as needed,
as if by a teacher who was doing weekly planning for
each subsequent set of lessons.

The lessons were constructed around the progres-
sion of exploration, application and problem-solving.
This progression was intended �rst to give students an
intuitive understanding of each transformation, then
to guide them into abstracting their properties, and
�nally to allow them to use their skills in a problem-
solving situation. For example:

� Reection

{ Explore across x-axis only

{ Explore across x- and y- axes

{ Apply to create a given compound shape

� Rotation

{ Explore rotation around origin

{ Explore changing degree and centre of rota-
tion

{ Explore with self-made shapes

{ Apply to create a given compound shape

Solve the following:



Figure 3: Student Learning Interface

Figure 4: Rotation Applet

� What are the e�ects of reection on the coordi-
nates of the shape?

� Are reections and rotations associative and-or
commutative?

For a typical stage in the plan, one or two applets
were needed in addition to supporting content. This
included both directions on how to use the applets and
a sequence of activites to be completed using the given
applet. The students also had the chance to look at
a set of questions that they would be answering o�-
line following their sessions. For the lesson above, the
student's learning interface appears in Figure 3. The
applet used appears in Figure 4. Figure 5 shows the
underlying JavaBean schematic for the applet as it was
constructed by the teacher.

In practice, the twenty four students were assigned
to three groups of eight students, rotating between
using the four workstations in pairs and two other
related non-computational activities. Each pair of
students negotiated their roles at the keyboard and

Figure 5: Schema for Rotation Applet

mouse, exploring the lesson cooperatively. They fol-
lowed the provided text with additional guidance and
instruction from the teacher. In general, the teacher
managed the attention of all twenty four students and
thus provided limited support to the computer users.

5.1.2 Student Participation

One of the primary objectives of the project was to
have the students actively participating in the design
of the applets. Three oral de-brie�ng sessions were
held in order to solicit the ideas and opinions of the
students. In addition, each student completed a jour-
nal entry following a 40 minute session using the ap-
plets. The journal questions were aimed at gathering
feedback on three issues:

� students' general feelings about the di�culty level
and \fun quotient" of the applets,

� students' opinions about the design and layout of
the applets, and

� students' assessments of the e�ectiveness of the
applets and reections on their own learning.

The oral de-brie�ng sessions were especially fruit-
ful. A similar phenomenon has been observed in other
collaborative research studies with children [8]. The
students were very keen on voicing their opinions and
discussing with their classmates. They were much
more critical and verbose than in their journal en-
tries. They were also much more creative; it was dur-
ing these sessions that the students suggested imag-
inative alternatives to the existing applets and even
completely new approaches. One such approach was
to use collaboration tools to create a game that could
be played on di�erent computers.

The students also completed a worksheet following
each session. The questions were divided into two cat-
egories: (1) questions directly related to concepts pre-



sented through the use of the applets; these would re-
inforce their understanding and provide a means of as-
sessment, and (2) questions which extended and sup-
plemented these concepts; these were used primarily
to introduce concepts that were more di�cult to cover
with the applets. It was decided to have the students
work on these questions o�-line both to free up com-
puter time for the other groups and to observe the way
in which they would translate their on-line learning to
a more traditional setting.

5.1.3 Observations

The students participated in approximately 12 forty
minute sessions each and used a total of sixteen
applets. Their feedback over this time as well as
the teacher's observations gave strong indications of
the strengths and weaknesses of the applets. The
strengths lay mostly in the interactive nature of the
applets.

Students enjoyed experimenting with di�erent val-
ues and shapes; they were able to manipulate the
shapes and create patterns with them that would
have taken much more time (and frustration) on pa-
per. The colourful and playful aspect a�orded by the
beans was also very motivating for the younger stu-
dents. Another strength was the breadth of concepts
that these applets allowed the students to encounter.
Whereas transformations are traditionally taught as a
self-contained geometry module, these applets bridged
across the curriculum from number concepts through
geometry to relations and functions.

The major weakness was the lack of interface com-
ponents speci�cally designed to provide tutorial-like
support. These include:

� GUI features such as labels on the axes and coor-
dinates on the graphs;

� visual aids such as displaying the lines of reec-
tion, the centre of rotation and the translation
vectors;

� animation of shapes as they underwent transfor-
mations;

� feedback/response mechanisms for reinforcing
students' progress.

The limitations and immaturity of the technology pre-
vented the development of such components.

Another concern which arose was the impact of
cooperative learning in a single learner context. Al-
though the students were able to adapt very well

to this working environment and gleen valuable ex-
periences from exchanges with their partners (and
amongst groups), there was no e�ort to design the
applets for multi-user contexts. The students adapted
by sharing control of the mouse and the keyboard so
that each partner was responsible for certain function-
alities. This seemed to work well. However, more con-
structive means of sharing a learning environment are
desirable; these issues have been addressed by other
groups [7, 13].

Striking learning style di�erences emerged as the
students used the applets. While half the students
enjoyed the feeling of exploring and experimenting,
the other half expressed strong discontent with the
lack of explicit instructions. It is feasible to cater to
both these learning styles by providing more guidance
to those who need it. Due to time constraints, this
issue was not addressed.

5.2 Testing for the learning barrier:

simCHET

The second line of investigation was aimed at identi-
fying the degree to which the students could adapt to
the design methodology required to apply the tech-
nology. It would have been desirable to have the
students employ a construction environment like Java
Studio. However technical problems made it infeasible
for them to use it. The tools employed by the model
teacher such as BeanBox were clearly inadequate for
use by inexperienced users.

In its stead, a low tech design tool called simCHET
was conceived. It provides a facsimile environment
that supports group learning and interaction, hands-
on construction and heuristic design of tools. Every-
day items such as paper, string, markers and tape are
used to represent the essential features of a JavaStudio
session. The students worked with the same mathe-
matical concepts they had explored using the applets
while learning the principles of the design methodol-
ogy and then designing applets of their own.

5.2.1 Tools and resources

simCHET, simulated Computer Human Engagement
Tool, was designed with a view to reproducing the in-
teraction observed in the JavaStudio design process.
It was immediately recognized that it would be im-
possible, and even undesirable, to mimic all aspects of
JavaStudio.

In practical terms, simCHET is a relatively sim-
ple tool. It is similar to the CARD/PICTIVE tools
employed by Muller et al. [9]. This approach was



Figure 6: A rotation bean with icon and descriptors

originally pioneered by Beck and Cunningham [3] in
support of teaching object-oriented thinking. It in-
volves the use of index cards or note paper to rep-
resent the components or objects within the system.
Spatial organization of the cards reects the relation-
ships between the objects and additional indicators
and/or text provides the detailed functionality. De-
sign can then take place with the alteration of either
or both the cards themselves and their organization.

In the case of simCHET, the tool is composed of
six basic elements:

� page-sized PostIt notes - component icons repre-
senting JavaBeans;

� drawable paper surface - a large area for assem-
bling the icons and then adding relational nota-
tion and indicators;

� coloured pens - for notation; di�erent colours de-
picting various processes and mechanisms;

� smaller PostIt Notes - descriptors indicating the
icon functions and dynamics (e.g. what happens
when);

� yarn/string of various lengths - the connections
between the various components;

� very small PostIt Notes - instantiation7 tokens
used to show speci�c values or data blocks as they
are passed around the system.

Interestingly, the essential feature seemed to be the
descriptors; in initial tests both with adults and stu-
dents, it was found that it played an essential role in
enabling correct design procedure (Figure 6 shows an
example of a \rotation" bean with its icon and de-
scriptor). This is not surprising since the descriptors

7Instantiation involved choosing particular values and events

to anticipate as a designer how the design would respond.

Figure 7: A full simCHET-designed applet

peg the functionality of each JavaBean. Similar fea-
tures are found in most scenario-based tools of this
sort [3, 9] as it provides the critical information about
the nature of the objects.

In order to understand how simCHET is both simi-
lar to and distinct from Java Studio, both can be char-
acterized by what they o�er the user in support of the
construction of Beans-based tools. Java Studio can be
described as having an explicit visual interface, dual
representations of the function and the form of the
design and computer-mediated manipulation of com-
ponents.

simCHET on the other hand has a single multi-
dimensional, multi-modal representation, notional
icons and functionalities, unmediated manipulation of
the relationships and reliance on user compliance with
rules of interaction. Figure 7 shows an example of a
full simCHET-designed applet. Note the similarities
to (and di�erences with) the JavaStudio design for the
same applet shown in Figure 5.

5.2.2 Implementation

An initial testing of the proposed procedure was per-
formed by the members of the project. Authors
J�orgenson and Sinclair ran members of ATiC (includ-
ing author Balka) through a mockup of the initial trial.
A number of adjustments were subsequently made to
the procedure which later were shown to be impor-
tant; for example, pads of paper were needed to allow
students to rough out preliminary Bean designs before
attempting their �nal good version on PostIts.

Three simCHET trials were undertaken within a
period of one month. Each trial took about 1.5 to
2 hours. Except for the �rst trial, each was followed
by an oral debrie�ng (the �rst trial was followed by
journalling).

The �rst trial introduced simCHET to the students.



It required additional time to communicate how the
tools were to be used and to demonstrate construc-
tion techniques. They were led through the initial
steps of the design as a group, identifying the com-
ponents needed to build a relatively simple rotation
applet with which they had worked before. A large
support team of �ve researchers was present to provide
constant support for the six working groups. Most of
the groups were able to complete a working design
within a two hour period.

A followup trial was run the following day involv-
ing a somewhat more complex applet. The students
sketched their designs on paper instead of using the
full PostIt Note-based process. This was intended to
reinforce their experience on the previous day without
invoking all the support and materials needed for a full
run. The students were able to construct the applets
without di�culty in a much shorter time period.

The �nal trial was aimed at seeing if the students
could now employ simCHET to design their own ap-
plets using transformations. They were told that their
ideas and designs would be potentially developed by
the PDG team. The teachers stressed the fact that
their creativity would be particularly welcomed, as
would their suggestions for new JavaBeans. The stu-
dents began by brainstorming ideas both individually
and in groups. They were very excited by their ideas
and very comfortable working within the framework
of the existing technology. As they saw the need for
a new JavaBean, they would inquire whether it was
necessary and possible to make.

The students then planned the layout of their ap-
plets and made a list of JavaBeans that would be
needed in order to make the applet work. After having
discussed their designs with their teacher and mem-
bers of the PDG team, the students began the con-
struction of their applets.

5.2.3 Student Participation

Through the active participation of the students, it
was possible to identify the di�culties they encoun-
tered in their design processes, the constraints of the
given tools, and the strategies they developed to cope
with these problems.

The students found the methods of connecting Jav-
aBeans somewhat confusing; this was mostly due to
the fact that they had not fully grasped the function
of each of the JavaBeans. In some cases, they decided
to group several functions into one bean thus creating
a type of meta-bean. Although meta-beans might be
less exible, they certainly seemed more intuitive to
use for the students.

Figure 8: PDG member collaborating with students

As the students worked on developing their own ap-
plets it became clear that the JavaBeans available to
them were insu�cient. Students repeatedly requested
timer Beans, collision Beans8, and drawing Beans9.
Although they were not constrained in their design
ideas, it was evident that in order to support the imag-
ination of the students, a more sophisticated set of
JavaBeans would have to be provided.

Remarkably, the students demonstrated their un-
derstanding of the underlying technology by explicitly
suggesting new directions for research. They antici-
pated some of the JavaBeans still under development
such as the collaboration Beans; these would allow
for students to construct tools which could be shared
across the network.

5.2.4 Observations

The iconic representation of the JavaBeans played
an important role in the students' learning processes.
They created unique icons for each of the JavaBeans
thereby establishing personal connections to them.
While adding descriptors and connectors to each of
their icons, they were able to develop an understand-
ing of their functions and further re�ne their appear-
ances. In addition, by taking their applets through
a sample instantiation, they realized that a \Hold"
Bean10 would be needed to properly control the ow of
data. These were rapidly integrated into each group's
design. The students gradually acquired the event-
driven mindset necessary for a correct design.

8The Collision Bean would detect when two shapes had col-

lided on the grid.
9The Drawing Bean would provide more exible ways for

students to create multi-coloured shapes
10The Hold Bean interrupts the ow of events, pending some

action from the user like pressing a button.



The students were actively involved in the pro-
cess, obviously enjoying themselves and thoroughly
engaged in their learning. One group even presented
their applet design as an \interpretive dance", one
member adopting the role of each Bean and then act-
ing out its function! Each student in the group acted
as a JavaBean and performed the task required as an
instantiation tool place. They were even able to in-
vent a new JavaBean whose purpose was to disinte-
grate the applet once the instantiation was �nished.
Although this JavaBean performs a questionnably im-
portant function, it was apparent that the students felt
comfortable enough with the simCHET framework to
extend it on their own.

The �nal trial showed conclusively that the stu-
dents felt very comfortable with the simCHET frame-
work. Moreover, it was evident that the nature of the
technology did not constrain their imaginations. They
were able to create unique applets and imagine func-
tionalities that were not currently available. When
told that certain functionalities would be more di�-
cult to implement, the students chose to brainstorm
other mechanisms to keep their designs interesting.
Some of the mechanisms led to strategic collaborative
games which were built by the PDG team.

6 Conclusions

The primary aim of this project was to a�rm (or deny)
the viability of component-based technologies in con-
structionist educational practices, in particular the ap-
plicability of OpenMath JavaBeans for use in middle
school mathematics education. The two anticipated
barriers to its use were tested for by implementing the
existing technology in two stages; �rst, investigating
the functionality of the JavaBeans toolset by building
applets to teach a speci�c lesson plan in mathematics;
second, using a low-tech participatory design tool to
explore the capacity of students to learn and apply the
principles of component-based tool construction.

In the �rst instance it was demonstrated, with some
quali�cations, that the technology could be applied to
teach mathematics, at least in the case of transforma-
tions. The emphasis was as an adjunct to traditional
teaching, especially in light of the apparent need for a
more responsive and re�ned user interface with signif-
icant guidance mechanism. It was apparent that the
nature of the learning and the breadth of the knowl-
edge explored was a�ected by the presence of the tech-
nology.

In the second, it was clearly observed that stu-
dents can learn and apply component construction

techniques and, perhaps more importantly, they can
work creatively within that paradigm. This was the
more important result as it was not entirely obvious
that inexperienced users could adapt their thinking to
the model supported by the technology. While it is
most desirable that the computer �t the natural dy-
namics of the users, it is in the meantime inevitable
that the value of such tools will depend on how readily
they appeal to students' intuition.

Finally, this project experimentally applied guided
collaboration methodologies in an e�ort to reach the
conclusions above. Although the technology was not
ready for trial use, it was found that its application
could be represented in facsimile to a degree which
provided the information needed. This approach relied
heavily on the participation of students and the school
as collaborators with the researchers and as such was
a unique experience for both groups. It required the
presence of an unusually skilled teacher/researcher
and continuous technical support.

7 Future work

Research collaboration was very fruitful both for soft-
ware designers and for students. This partnership
could be enhanced by designing new methodologies
that enable researchers to guide the collaboration
more e�ectively. The work of Druin et. al. [5] sug-
gests a methodology for working with children from
ages seven to 10. Middle school kids (ages 11-14)
can also be e�ective design partners; however, existing
methodologies should be adapted appropriately.

As the technology continues to be re�ned and stabi-
lized, attention should be turned to developing \better
things to do and more powerful ways to think about
what you are doing" [10]. What kinds of things can
and should teachers and students be building with this
technology? Will teachers build instructional modules
for their students? Will students build games to en-
able them to play with new concepts? Can students
and teachers alike build authentic and cross-curricular
problem-solving resources? What parts of the curricu-
lum can and should these games and resources cover?

The technology itself has to be intuitive and sup-
portive to use for the students without undermining
its power and exibility. In its current state, the tech-
nology is quite rudimentary and restricted. The pro-
gramming language LOGO, which was developed for
use by children provides a guiding framework for pow-
erful yet intuitive interfaces. Similarly, the icon-based
programming language for children ICOBotics(TM)
emphasizes the importance of visual interfaces by al-



lowing the user to write programs with pictures. The
students themselves can play a crucial role in the re-
�nement of PolyMath technology as it matures from
an unstable professional tool to a stable child-friendly
one. The creation of the software KidPAD from its
parent PAD++ is an example of the important role
carried out by children [6] in software development.
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