
Premature Adoption of a Constructive

Educational Technology: A Case Study

Loki J�orgenson� Nathalie Sinclairyz

Stephen Braham�z Ellen Balkax

Simon Fraser University, Burnaby, B.C. CANADA V5A 1S6

Abstract

Is it feasible for middle school students to use component-oriented software tools

to construct their own mathematical explorations and experiments? In order to

explore the potential of a new constructive educational technology for mathemat-

ics, a program of guided collaboration between middle school students on Bowen

Island near Vancouver Canada and researchers at Simon Fraser University was

established. Novel and recently developed bridging methodologies were introduced

to overcome the lack of maturity in the software. The goal was to predict its

feasibility as an in-class resource for learning mathematics and to engage the

students in the software design process.

Keywords constructionism, mathematics education, JavaBeans(TM), collabora-

tion, telelearning, applets, participatory design

1 Introduction

The goal of this project was to test whether a component-oriented environment
designed for distance learning would support a \constructionist" approach to
learning mathematics in a middle school context. The results were intended to
re�ne the direction of current software development and to suggest how best to
use this new technology in the classroom. As the software was not yet fully de-
veloped, the challenge was to support a \premature adoption" process in a �eld
trial, in this case, at a small private middle school at a remote location. The
students were engaged in a \guided collaboration"; they were encouraged to par-
ticipate in the assessment and subsequently the development of the technology.
They were asked to reect on their use of the technology to aid the researchers

�Centre for Experimental & Constructive Mathematics
yIsland Paci�c School
zPolyMath Development Group
xAssessment of Technology in Context lab



in developing the software and predicting how e�ective the technology would be
when completed.

The central feature of the technology under review is its use for component-
based construction of interactive programs; it allows relatively inexperienced
non-programmers to build their own tools for exploring mathematical concepts.
However, at the time of implementation the construction tools didn't yet support
use by students. Consequently, the functionality and exibility of the planned
toolset was assessed by having an experienced teacher/researcher hand-build a
set of interfaces focussed on certain mathematical concepts. This de�ned the
scope of applicability the toolset possessed and helped identify where further
development was required.

A pressing question facing the developers was whether middle school stu-
dents would be able to employ such a technology e�ectively once it reached
maturity. The students would have to learn new ways of relating to software;
their roles would change from passive users to thinking creators, requiring them
to master concepts and tools that are not typically taught at the middle school
level. In order to facilitate this process, a \participatory design" scenario was
implemented. The main idea of participatory design is to encourage active par-
ticipation of the users themselves in the design of technology [1]. Through the
user of a low-tech design tool, the students thus contributed to the development
of the design and functionality of the planned toolset.

Some recent studies of new educational technologies have focussed on engag-
ing children [6, 8], as well as teachers [3], in the design process. This approach
a�ords an opportunity for researchers to gain a fresh perspective on their work
and how children perceive and interact with their environment. These studies
have typically involved children ages 5 to 10 and have employed approaches such
as participatory design, technology immersion, and contextual inquiry. Similar
ideas were adapted for use in this project.

2 The Participants

The project arose out of a convergence of several groups' interests. Initially
proposed as a �eld testing project for a telelearning development programme, it
eventually acquired a multi-facetted character reecting the goals of each group.

The PolyMath Development Group (PDG)1 working within the Centre for
Experimental and Constructive Mathematics (CECM) is involved with the Tele-
Learning - National Centre for Excellence (TL-NCE). Its contribution to TL-
NCE is a project known as M3Plexus, aimed at delivering live mathematical
documents via networks.

The Island Paci�c School is a small community-based middle school situ-
ated on Bowen Island near Vancouver, Canada. It o�ers a full curriculum to
students in grades 7 through 9 with an emphasis on diverse and enriched experi-
ential learning. Author Sinclair is the mathematics and information technology

1At the time, the PDG was composed of Trevor Bradley, Carlton Chan, Jen Chang, Paul
Irvine and Terrance Yu as well as authors J�orgenson, Sinclair and Braham



teacher at IPS as well as a researcher at the CECM.
The Assessment of Technology in Context (ATiC) laboratory was established

by author Balka at Simon Fraser University, focussing on the uses of participa-
tory design and ethnographic methodologies. It had only recently opened when
they were approached to participate in the project.

3 Educational technology for mathematics

There has been growing support for component-oriented architectures for edu-
cational software. For example, diSessa [4] has described and advocated \Open
Toolsets" such as Boxer; these are exible and malleable collections of compo-
nents which can be combined to create \microworlds". These microworlds o�er
students an opportunity to explore the interaction of elements they have con-
structed themselves. Similarly, the SimCalc project [14] is currently developing
educational components using \open" architectures which can be extended, cus-
tomized, and integrated. See also [9] for a description of component-oriented
exploratory software for Mathematics.

There are technical, social and pedagogical motivations for investigating
the potential of component-oriented architectures. Their primary bene�t is
that sets of speci�c- or general-purpose tools can be built rapidly and relatively
cheaply; they then can be easily modi�ed, extended and combined to yield more
tools. Moreover, tools built by other development groups can be integrated and
customized to meet the needs of a wide community of learners.

So, instead of relying on professional software developers, teachers and learn-
ers are given a toolboxwith which they can create their own interactive, dynamic
resources. As diSessa points out, this might encourage a wider range of groups,
including teachers and students - as well as programmers - to become involved
in the design of tools and activities. It is envisioned that a large and powerful
toolset might eventually emerge as a consequence.

Since these tools and resources can be distributed over the World-Wide Web
as Java applets and services, they are not platform dependent and do not require
the purchase of expensive specialized software or hardware. This ensures that
the learning opportunities a�orded by these technologies are available to the
widest range of learners as possible.

Students working with a component-based toolkit will have an authentic in-
tegrated learning environment. They will have access to a broad spectrum of
computational, symbolic, and visual tools which they can combine to test rela-
tionships and discover patterns. Students will have the opportunity to construct
knowledge in response to a problem at hand - one which they will investigate by
visualizing, transforming and simulating the mathematical concepts involved.
This mode of learning reects the \constructionist" approach spearheaded by
Papert [12] and underlying much of the LOGO based environments, including
StarLogo [13].



3.1 OpenMath JavaBeans

The technology studied in this project uses Java to construct components,
known as OpenMath JavaBeans, which can be linked together to form ap-
plets. Recently JavaBeans were introduced by Sun Microsystems as a standard
for a component-based architecture. Individual elements o�ering speci�c func-
tionalities can be constructed and then subsequently interconnected as desired.
Somewhat resembling a software version of Lego blocks, a reliable and easy-
to-assemble set of JavaBeans o�ers a simpli�ed development process that can
support use by regular users as well as experienced programmers.

OpenMath is a standard for communicating mathematical objects between
computer programs. It is also a general communications standard which sup-
ports the exchange of any non-textual, non-image data. It is currently being
integrated with MathML, one of the �rst of the Markup Language extensions
to be developed to deal with mathematics presented on-line.

OpenMath Javabeans can also be \shared" over the network. This a�ords
the possibility for collaboration; students can work in real-time with with class-
mates, teachers and researchers all over the world. Whether they are building
games or solving problems together, these collaborative activites will provide
students with a rich and exible social context in which they can build knowl-
edge as groups and as individuals.

3.2 Constructing Resources with OpenMath JavaBeans

A JavaBean is to an applet what a disk drive or a monitor might be to a com-
puter: It is a distinct component with a speci�c function which, when properly
assembled with other components, results in a useful tool. The component can
be easily re-used in another tool and connected in a variety of ways. Each Jav-
aBean has a variety of possible inputs and outputs which expect or produce
certain types of data. 1 shows a typical JavaBean used for translating points;
it has three possible inputs including a number for each of the x- and y-axis
translation values and the data points to be acted on. When it has received all
three, it automatically translates the data by the indicated amount and outputs
to whatever is connected to it.

The actual process of building an applet from JavaBeans is a relatively simple
one. The ease with which a student might be able to do this is de�ned by two
key factors:

� How well the construction environment has been designed

� How much exibility and functionality is available in the JavaBeans

Most construction interfaces o�er iconic representations of the JavaBeans which
allow them to be interconnected in a familiar drag-and-drop fashion. They help
identify the nature of the JavaBeans and support the user to connect them
properly (outputs going to inputs for example). Some of the better interfaces
show how the applet appears as the user adds components (for example, buttons
or sliders).

4



Figure 1: Enlarged view of an icon of a JavaBean for translating points

Typically, the user will begin by selecting and dropping JavaBeans onto the
contruction area and then start to interconnect them. It is essential that the user
understand how each JavaBean responds to input and what sort of output they
produce so that they are e�ectively assembled together. The design process often
takes place on paper ahead of time, with details of the construction being worked
out as the applet is built and tested. In many respects, this is very similar to the
usual programming process but without a focus on the details of a particular
language or syntax. The most important aspect the user needs to understand
is how an event, which might be generated by the push of a button JavaBean,
is handled by other JavaBeans which receive it and they in turn trigger other
events. This requires the ability to imagine a dynamic interconnectedness even
while playing with the representation in the construction environment.

Once the user has gathered together all the necessary JavaBeans and sub-
sequently connected them to each other, the resulting applet can be saved per-
manently. The applet can then be tested and, if satisfactory, can be integrated
into an on-line resource or simply run as a separate tool. If necessary, the user
can return to the construction tool and continue modifying the design until the
desired results is achieved.

4 Engaging the Technology in the Classroom

This project focussed on answering the question:

Can middle school students be reasonably expected to construct
their own resources for learning using a component technology ap-
proach?

Two possible barriers to success were:

� Limits of the technology - would it be able to meet the requirements for
building useful tools and resources?



� Limits of the students - would they be able to learn and employ the nec-
essary skills to assemble their tools?

In the case of the technology, it was not clear that it would o�er su�cient
depth and breadth of functionality to ful�ll the needs of the students. Certainly
there were some strict limitations to the technology in its current form; in part
this was a consequence of the relative instability of the underlying Java language
and the immaturity of the supporting development environment. There was
also some speculation that the OpenMath component set was not su�ciently
comprehensive and would only be able to provide rudimentary tools. Keeping
these issues in mind, the objective would be to identify the projected limits of
a mature and fully implemented set of OpenMath JavaBeans.

For the students, it was important to determine if they would be able to
employ the technology, mature or otherwise. The construction of resources
from components requires an understanding of event-driven processes and an
ability to visualize the ow of information. These skills are usually acquired
through experience in programming and it was not obvious that the students
would be able to adapt to the paradigm in a reasonable period of time. On
the other hand, similar skills are necessary for popular board and video games2,
and so it seemed a reasonable premise that needed to be tested.

4.1 Testing for the technology barrier: Applets

The �rst stage was to support the creation of a set of focussed resources by a
model teacher. Under a teacher-driven construction paradigm, we hoped to show
that the technology could be applied by a knowledgeable educator. The teacher
endeavoured to use the toolkit, in its initial incarnation, to create applets which
could be used to investigate and explore relations and problems in a particular
subdomain of geometry - that of transformations (e.g. translation, rotation, and
reection).

4.1.1 Implementation

The model teacher (author Sinclair) was enhanced in the sense of having ex-
pertise and a technical skill set beyond any to be reasonably expected from
most teachers. Consequently, she was able to cope with problems, setbacks and
other challenges in the classroom which would have made progress impossible
otherwise. In addition, direct technical support was provided to handle critical
problems encountered during the resource development. In this fashion, the lack
of on-line help, stability in the software, supporting resources and facilitating
environment was compensated for.

The speci�c topic of transformations was chosen in particular to take advan-
tage of the visual and interactive strengths of the technology; tranformations

2Such as the well-known board game Mousetrap where children must construct a \mouse-

trap" composed of many interconnected pieces that ful�ll an intended purpose (to catch a
mouse)

6



Figure 2: Coping with group use of single-operator environment

Figure 3: Student learning interface

are typically awkward for students to explore using pencil and paper. Stu-
dents can often predict the result of a transformation but have more di�culty
in identifying the single transformation that connects a shape with its image.
Also, transformations is a potentially rich and engaging subject which can be
extended to more advanced topics such as tesselations and wallpaper patterns.
It was hoped that by having a dynamic environment, students could investi-
gate these areas and gain a deeper appreciation for the fundamental concepts
involved, such as isometry and congruence.

The applets themselves were constructed to satisfy a range of pedagogical
goals; some were purely exploratory (explore reecting shapes across the x-axis),
some were geared toward applying a speci�c concept (use reection to create a
given compound shape) and others allowed students to investigate a particular
problem (what are the e�ects of reection on the coordinates of the shape?).

On average, the students had time to use three applets per session. They
were given a set of questions to answer after each session. The purpose of the

7



Figure 4: Rotation applet

questions was threefold: to support their on-line learning, to gauge whether
they were grasping the concepts explored during the session and to see whether
they were able to transfer their on-line learning to the more traditional pencil
and paper environment. A student's typical learning interface appears in Figure
3. The applet used appears isolated in Figure 4. Figure 5 shows the underlying
JavaBean schematic for the applet as it might be constructed in JavaStudio.

In practice, the twenty four students were assigned to three groups of eight
students, rotating between using the four workstations in pairs and two other re-
lated non-computational activities. Each pair of students negotiated their roles
at the keyboard and mouse, exploring the lesson cooperatively. They followed
the provided text with additional guidance and instruction from the teacher. In
general, the teacher managed the attention of all twenty four students and thus
provided limited support to the computer users.

4.1.2 Student Participation

One of the primary objectives of the project was to have the students actively
participating in the design of the applets. Three oral de-brie�ng sessions were
held in order to solicit the ideas and opinions of the students. In addition,
each student completed a journal entry following a 40 minute session using the
applets. The journal questions were aimed at gathering feedback on three issues:

� students' general feelings about the di�culty level and \fun quotient" of
the applets,

� students' opinions about the design and layout of the applets, and

8



Figure 5: Schema for Rotation Applet

� students' assessments of the e�ectiveness of the applets and reections on
their own learning.

The oral de-brie�ng sessions were especially fruitful. A similar phenomenon
has been observed in other collaborative research studies with children [8]. The
students were very keen on voicing their opinions and discussing with their
classmates. They were much more critical and verbose than in their journal
entries. They were also much more creative; it was during these sessions that
the students suggested imaginative alternatives to the existing applets and even
completely new approaches. One such approach was to use collaboration tools
to create a game that could be played on di�erent computers.

4.1.3 Observations

The students participated in approximately 12 forty minute sessions each and
used a total of sixteen applets. Their feedback over this time as well as the
teacher's observations gave strong indications of the strengths and weaknesses
of the applets. The strengths lay mostly in the interactive nature of the applets.

Students enjoyed experimenting with di�erent values and shapes; they were
able to manipulate the shapes and create patterns with them that would have
taken much more time (and frustration) on paper. The colourful and playful
aspect a�orded by the JavaBeans was also very motivating for the younger
students. Another strength was the breadth of concepts that these applets
allowed the students to encounter. Whereas transformations are traditionally
taught as a self-contained geometry module, these applets bridged across the
curriculum from number concepts through geometry to relations and functions.

The major weakness was the lack of interface components speci�cally de-
signed to provide tutorial-like support. These include:

� GUI features such as labels on the axes and coordinates on the graphs;

9



� visual aids such as displaying the lines of reection, the centre of rotation
and the translation vectors;

� animation of shapes as they underwent transformations;

� feedback/response mechanisms for reinforcing students' progress.

The limitations and immaturity of the technology prevented the development
of such components.

Another concern which arose was the impact of cooperative learning in a
single learner context. Although the students were able to adapt very well to
this working environment and gleen valuable experiences from exchanges with
their partners (and amongst groups), there was no e�ort to design the applets
for multi-user contexts. The students adapted by sharing control of the mouse
and the keyboard so that each partner was responsible for certain functionalities.
This seemed to work well. However, more e�ective means of sharing a learning
environment are desirable; these issues have been addressed by other studies
[7, 15].

4.2 Testing for the learning barrier: simCHET

The second line of investigation was aimed at identifying the degree to which
the students could adapt to the design methodology required to apply the tech-
nology. It would have been desirable to have the students employ a construction
environment like JavaStudio3. JavaStudio provides a high level of support for
the users, o�ering a relatively intuitive interface with multiple perspectives,
drag-and-drop functionality, understandable visual metaphors, and a WYSI-
WYG representation of the applet as it is being built; Figure 6 shows a typical
JavaStudio construction session. However technical problems made it infeasible
for them to use it. The tools employed by the model teacher such as BeanBox
were inadequate for use by inexperienced users as they were much less intuitive
and required an innate understanding of the programming issues.

In its stead, a low tech design tool called simCHET was conceived. It pro-
vides a facsimile environment that supports group learning and interaction,
hands-on construction and heuristic design of tools. Everyday items such as
paper, string, markers and tape are used to represent the essential features of a
JavaStudio session. The students worked with the same mathematical concepts
they had explored using the applets while learning the principles of the design
methodology and then designing applets of their own.

4.2.1 Tools and resources

simCHET, simulated Computer Human Engagement Tool, was designed with a
view to reproducing the interaction observed in the JavaStudio design process.
It was immediately recognized that it would be impossible, and even undesirable,
to mimic all aspects of JavaStudio.

3(TM) Sun Microsystems

10



Figure 6: The JavaStudio construction interface: Note the applet being built
on the left with its construction schematic on the right.

Figure 7: A rotation JavaBean with icon and descriptors

In practical terms, simCHET is a relatively simple tool. It is similar to
the CARD/PICTIVE tools employed by Muller et al. [10]. This approach was
originally pioneered by Beck and Cunningham [2] in support of teaching object-
oriented thinking. It involves the use of index cards or note paper to represent
the components or objects within the system. Spatial organization of the cards
reects the relationships between the objects and additional indicators and/or
text provides the detailed functionality. Design can then take place with the
alteration of either or both the cards themselves and their organization.

In the case of simCHET, the tool is composed of six basic elements:

� page-sized PostIt notes - component icons representing JavaBeans;

� drawable paper surface - a large area for assembling the icons and then
adding relational notation and indicators;

� coloured pens - for notation; di�erent colours depicting various processes

11



Figure 8: A full simCHET-designed applet

and mechanisms;

� smaller PostIt Notes - descriptors indicating the icon functions and dy-
namics (e.g. what happens when);

� yarn/string of various lengths - the connections between the various com-
ponents;

� very small PostIt Notes - instantiation4 tokens used to show speci�c values
or data blocks as they are passed around the system.

Interestingly, one of the most important features seemed to be the descriptors;
in initial tests both with adults and students, it was found that they played an
essential role in enabling correct design procedure (Figure 7 shows a representa-
tion of a Rotation JavaBean with its icon and descriptor). This is not surprising
since the descriptors de�ne the functionality of each JavaBean. Similar features
are found in most scenario-based tools of this sort [2, 10] as it provides the
critical information about the nature of the objects.

Figure 8 shows an example of a full simCHET-designed applet created by
students. Both simCHET and JavaStudio can be characterized by what they of-
fer the user in support of the construction of JavaBeans-based tools. Java Studio
has an explicit visual interface, dual representations of the function (schematic)
and the form (interface appearance) of the design, and a computer-mediated
manipulation of components (it won't allow you to hook JavaBeans together
that shouldn't be). simCHET on the other hand has a multi-dimensional,
multi-modal representation, notional icons and functionalities, unmediated ma-
nipulation of the relationships and reliance on user compliance with rules of
interaction. Further it can be modi�ed to suit the users' preference for how
things should appear or be organized.

4Instantiation involved choosing particular values and events to anticipate as a designer
how the design would respond.

12



4.2.2 Implementation

An initial testing of the proposed procedure was performed by the members of
the project. Authors J�orgenson and Sinclair ran members of ATiC (including
author Balka) through a mockup of the initial trial. A number of adjustments
were subsequently made to the procedure which later were found to be impor-
tant; for example, pads of paper were needed to allow students to rough out
preliminary designs before attempting their �nal version on PostIt Note paper.

Three simCHET trials were undertaken within a period of one month. Each
trial took about 1.5 to 2 hours. Except for the �rst trial, each was followed by
an oral debrie�ng (the �rst trial was followed by journalling).

The �rst trial introduced simCHET to the students. It required additional
time to communicate how the tools were to be used and to demonstrate con-
struction techniques. They were led through the initial steps of the design as
a group, identifying the components needed to build a relatively simple rota-
tion applet with which they had worked before. A large support team of �ve
researchers was present to provide constant support for the six working groups.
Most of the groups were able to complete a working design within a two hour
period.

A followup trial was run the next school day involving a somewhat more
complex applet. The students sketched their designs on paper instead of using
the full PostIt Note-based process. This was intended to reinforce their experi-
ence on the previous day without invoking all the support and materials needed
for a full run. The students were able to construct the applets without di�culty
in a much shorter time period.

The �nal trial was aimed at seeing if the students could now employ sim-
CHET to design their own applets using transformations. They were aware that
their ideas and designs would be potentially developed by the PDG team. The
teachers stressed the fact that their creativity would be particularly welcomed,
as would their suggestions for new JavaBeans. The students began by brain-
storming ideas both individually and in groups. They were very excited by their
ideas and very comfortable working within the framework of the existing tech-
nology. As they saw the need for a new JavaBean, they would inquire whether
it was necessary and possible to make.

The students then planned the layout of their applets and made a list of
JavaBeans that would be needed in order to make the applet work. After having
discussed their designs with their teacher and members of the PDG team, the
students began the construction of their applets.

4.2.3 Student Participation

Through the active participation of the students, it was possible to identify the
di�culties they encountered in their design processes, the constraints of the
given tools, and the strategies they developed to cope with these problems.

The students found the methods of connecting JavaBeans somewhat con-
fusing; this was mostly due to the fact that they had not fully grasped the

13



Figure 9: PDG member collaborating with students

function of each of the JavaBeans. In some cases, they decided to group several
functions into one JavaBean thus creating a type of meta-JavaBean. Although
meta-Beans might be less exible, they certainly seemed more intuitive to use
for the students.

As the students worked on developing their own applets it became clear
that the JavaBeans available to them were insu�cient. Students repeatedly
requested Timer JavaBeans, Collision JavaBeans5, and Drawing JavaBeans6.
Although they were not constrained in their design ideas, it was evident that
in order to support the imagination of the students, a more sophisticated set of
JavaBeans would have to be provided.

Remarkably, the students demonstrated their understanding of the under-
lying technology by explicitly suggesting new directions for research. They
anticipated some of the JavaBeans still under development such as the Collab-
oration JavaBeans; these would allow students to construct tools which could
be simulataneously shared across the network.

4.2.4 Observations

The iconic representation of the JavaBeans played an important role in the stu-
dents' learning processes. They created unique icons for each of the JavaBeans
thereby establishing personal connections to them. While adding descriptors
and connectors to each of their icons, they were able to develop an understand-
ing of their functions and further re�ne their appearances. In addition, by
taking their applets through a sample instantiation, they realized that a Hold
JavaBean7 would be needed to properly control the ow of data. These were
rapidly integrated into each group's design during the session. It was apparent

5The Collision JavaBean would detect when two shapes had collided on the grid.
6The Drawing JavaBean would provide more exible ways for students to create multi-

coloured shapes
7The Hold JavaBean interrupts the ow of events, pending some action from the user like

pressing a button.

14



that the students had acquired the event-driven mindset necessary for a correct
design.

The students were actively involved in the process, obviously enjoying them-
selves and thoroughly engaged in their learning. One group even presented their
applet design as an \interpretive dance", one member adopting the role of each
JavaBean and then acting out its function! Each student in the group acted
as a JavaBean and performed its task as required by the design. They even
invented a new JavaBean whose purpose was to \disintegrate" the applet once
the instantiation was completed! Although not technically pertinent, it was ap-
parent that the students felt comfortable enough with the simCHET framework
to extend it on their own.

The �nal trial showed conclusively that the students felt very comfortable
with the simCHET framework. Moreover, it was evident that the nature of the
technology did not constrain their imaginations. They were able to create unique
applets and imagine functionalities that were not currently available. When told
that certain functionalities would be more di�cult to implement, the students
chose to brainstorm other mechanisms to keep their designs interesting. Some
of the mechanisms led to strategic collaborative games which were built by the
PDG team.

5 Conclusions

The primary aim of this project was to determine the viability of component-
based technologies in constructionist educational practices, in particular the
applicability of OpenMath JavaBeans for use in middle school mathematics ed-
ucation. The two anticipated barriers to its use were tested for by implement-
ing the existing technology in two stages; �rst, investigating the functionality
of the JavaBeans toolset by building applets to teach a speci�c lesson plan in
mathematics; second, using a low-tech participatory design tool to explore the
capacity of students to learn and apply the principles of component-based tool
construction.

In the �rst instance it was demonstrated, with some quali�cations, that
the technology could be applied to teach mathematics, at least in the case
of transformations. The emphasis was as an adjunct to traditional teaching,
especially in light of the apparent need for a more responsive and re�ned user
interface with signi�cant guidance mechanism. It was apparent that the nature
of the learning and the breadth of the knowledge explored was a�ected by the
presence of the technology: This was evident in scope of the material covered
(details to be described elsewhere) - the teacher was able to explore aspects of
transformations which are usually too advanced for middle school students -
as well as the ability of the students to absorb and apply the ideas presented.
While it hasn't been quantatively shown that students learned better or faster,
it was a fact that they were able to explore ideas that would otherwise have
been out of their reach.

In the second, it was clearly observed that students can learn and apply

15



component construction techniques and, perhaps more importantly, they can
work creatively within that paradigm. This was the more important result as
it was not entirely obvious that inexperienced users could adapt their thinking
to the model supported by the technology. While it is most desirable that the
computer �t the natural dynamics of the users, it is in the meantime inevitable
that the value of such tools will depend on how readily they appeal to students'
intuition.

Finally, this project experimentally applied guided collaboration methodolo-
gies in an e�ort to reach the conclusions above. Although the technology was
not ready for trial use, it was found that its application could be represented
in facsimile to a degree which provided the information needed. This approach
relied heavily on the participation of students and the school as collaborators
with the researchers and as such was a unique experience for both groups. It
required the presence of an unusually skilled teacher/researcher and continuous
technical support.

6 Future work

The research collaboration was very fruitful both for software designers and for
students. While progress was slow developing the actual software, the process
clearly a�ected both groups and their views on technology, both in general and
in relation to OpenMath JavaBeans. This partnership could be enhanced by
designing new methodologies that enable researchers to guide the collaboration
more e�ectively. The work of Druin et. al. [5] suggests a methodology for
working with children from ages seven to 10. Middle school kids (ages 11-14)
can also be e�ective design partners; however, existing methodologies should be
adapted appropriately.

As the technology continues to be re�ned and stabilized, attention should
be turned to developing \better things to do and more powerful ways to think
about what you are doing" [11]. What kinds of things can and should teachers
and students be building with this technology? Will teachers build instructional
modules for their students? Will students build games to enable them to play
with new concepts? Can students and teachers alike build authentic and cross-
curricular problem-solving resources? What parts of the curriculum can and
should these games and resources cover?

The technology itself continues to be developed; the goal continues to be
to make it intuitive and user-friendly for students without undermining its
power and exibility. In its current state, the technology is rudimentary and
restrictive. The participation of its potential users will continue to guide its
development. There are other examples of technologies applied in the class-
room which have been developed in this fashion: The programming language
LOGO, developed for use by children, o�ers a guiding framework for powerful-
yet-intuitive interfaces. Similarly, the icon-based programming language for
children ICOBotics(TM) emphasizes the importance of visual interfaces by al-
lowing the user to write programs with pictures. The creation of the software

16



KidPAD from its parent PAD++ is an example of the important role carried
out by children [6] in software development.

Acknowledgements

This project has been made possible by the work of the entire PolyMath De-
velopment Group: Trevor Bradley, Carlton Chan, Jen Chang, Paul Irvine, and
Terrance Yu as well as authors J�orgenson, Sinclair and Braham. Also essential
was the work of the ATiC lab members, author Balka and ethnographer Michael
Jones.

We would also like to thank BC Tel Advanced Communications for donation
of an ISDN line to Bowen Island, Zentra Computers for donations of PC hard-
ware, and Innovative Computing Solutions and Redesign for their networking
support.

This work has been in part supported by research and equipment grants
from the TeleLearning - National Centre of Excellence (TL-NCE) and the Paci�c
Institute for the Mathematical Sciences. We would also like to thank the Centre
for Experimental & Constructive Mathematics, the Assessment of Technology
in Context lab and the Island Paci�c School for their support and participation
in this project.

References

[1] Ellen Balka. Political frameworks for system design: Participatory de-
sign in non-pro�t women's organizations in canada and the united states.
In J. Gaertner and I. Wagner, editors, Workshop Proceedings: Political

Frameworks of System Design From a Cross-Cultural Perspective. 1995.

[2] K. Beck and W. Cunningham. A laboratory for teaching object-oriented
thinking. Proceedings of OOPSLA'89, SIGPLAN Notices, 24(10):1{6, 1989.

[3] George Chin Jr., Mary Beth Rosson, and John M. Carroll. Participatory
analysis: Shared development of requirements from scenarios. CHI '97

Proceedings: Conference on Human Factors in Computing Systems, 1997.

[4] A.A. DiSessa. Open toolsets: New ends and new means in learning math-
ematics and science with computers. In E. Pehkonen, editor, Proceedings
of the 21st Conference of the International Group for the Psychology of

Mathematics Education, volume 1, pages 47{62. Lahti, Finland, 1997.

[5] Allison Druin, Ben Bederson, Angela Boltman, Adrian Miura, Debby
Knotts-Callahan, and Mark Platt. Children as our technology design part-
ners. In A. Druin, editor, The design of Children's Technology: How we

design and why? Morgan Kaufmann, 1998.

[6] Allison Druin, Jason Stewart, David Proft, Ben Bederson, and Jim Hol-
lan. Kidpad: A design collaboration between children, technologists, and

17



educators. Proceedings of the Conference on Human Factors in Computing

Systems, pages 463{470, 1997.

[7] Kori Inkpen. The e�ect of turn-taking protocols on childrens learning in
mouse-driven collaborative environments. Proceedings of Graphics Interface
'97, 1997.

[8] Maria Klawe and Eileen Phillips. Engaging children as collaborative re-
searchers: A classroom study with electronic mathematical games. unpub-
lished, 1995.

[9] Chronis Kynigos, Manolis KKoutlis, and Thanasis Hadzilacos. Mathemat-
ics with component-oriented exploratory software. International Journal

of Computers for Mathematical Learning, 2(3):229{250, 1997.

[10] Michael J. Muller, Leslie G. Tudor, Daniel M. Wildman, Ellen A. White,
Robert W. Root, Tom Dayton, Rebecca Carr, Barbara Diekmann, and
Elizabeth Dykstra-Erickson. Bifocal tools for scenarios and representations
in participatory activities with users. In John M. Carroll, editor, Scenario-
based Design. John Wiley and Sons, 1995.

[11] Seymour Papert. Teaching children to be mathematicians vs. teaching
about mathematics. AI Memo No. 249 and Logo Memo No. 4, 1971.

[12] Seymour Papert. Situating constructionism. In I. Harel and Seymour
Papert, editors, Constructionism. Ablex Publishing Corporation, 1991.

[13] M. Resnick. New paradigms for computing, new paradigms for thinking.
In A. diSessa, C. Hoyles, and R. Noss, editors, Computers and Exploratory

Learning, pages 31{43. Berlin: Springer-Verlag, 1995.

[14] J. Roschelle and J. Kaput. Educational software architecture and systemic
impact: The promise of component software. Journal of Educational Com-
puting Research, 14(3):217{228, 1996.

[15] Jason Stewart, Elaine M. Raybourn, Ben Bederson, and Allison Druin.
When two hands are better than one: Enhancing collaboration using single
display groupware. In ACM SIGCHI'98. ACM, 1998.

18


