Polynomial Interpolation in F[x] September 19, 2023 9:04 AM

Let F be a field. Given
$$n \ge 1$$
 distinct points $\sigma_{11}, \alpha_{22}, \dots, \alpha_{n} \in F$
and values $(y_1, y_2, \dots, y_n \in F$ find $f(x) \in F(x)$ with $deg(f) \le n-1$
Satisfying $f(-d_1) = y_1$.
 $f(x) = ax^2 + bx + C$
 $y_1 = 1$ $y_1 = 1$ $\Rightarrow y_2 = 4a + 2b + C$
 $x_2 = 2 + y_2 = 2$ $\Rightarrow y_2 = 4a + 2b + C$
 $x_2 = 2 + y_2 = 2$ $\Rightarrow y_3 = 9a + 3b + C$.
Solving a linear system, $n < n$,
using Chassian elimination does
 $O(n^3)$ arithmetic ops. M F.
Two $O(n^2)$ nethods
Lagrange interpolation
Let $L(x) = (x - x_1)(x - \alpha_1) - \cdots (x - \alpha_n)$.
Let $L(x) = L(x) + a_{21}L_2(x) + \cdots + a_{n-1}L_n(x)$.
Morite $f(x_1) = a_{1,0} + \cdots + a_{1,1}L_n(x)$.
Require $f(x_1) = a_{1,0} + \cdots + a_{1,1}L_n(x) + \cdots + a_{n-2}L_n(x)$.
Newton interpolation.
Write $f(x_2) = b_0 + b_1(x - a_1) + b_2(x - a_1)(x - a_{n-1}) + b_{n-1}(x - a_{n-1})$.
Require $f(x_1) = b_0 \Rightarrow b_0 = y_1$
 $y_1 = f(a_1) = b_0 \Rightarrow b_0 = y_1$
 $y_2 = f(a_2) = b_0 + b_1(a_2 - a_1) + 0 + b_1 = (y_2 - b_0)/(x_2 - a_1)$.

$$y_3 = f(\alpha_3) = b_0 + b_1(\alpha_3 - \alpha_1) + b_2(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2) + 0.$$

Example.
$$f(i) = i, f(z) = z, f(3) = z, n=3$$

 $f(x) = b_0 + b_1(x-x_1) + b_1(x-x_1)(x-x_1)$
 $f(x) = b_0 + b_1(x) = b_0 = 1$
 $2 = f(z) = 1 + b_1(1) \Rightarrow b_1 = (2-1)/1 = 1.$
 $2 = f(z) = 1 + 1 \cdot 2 + b_2(2)(1)$
 $2 = 3 + 2b_2 \Rightarrow b_2 = -\frac{1}{2}$ Newton form
 $f(x) = 1 + 1 \cdot (x-1) - \frac{1}{2}(x-0)(x-2).$
 $f(x) = -\frac{1}{2}x^2 + \frac{2}{2}x - 1 \leftarrow \text{Standard form}.$
Magle. F=Q interp($[x_1, ..., x_n], [y_1, ..., y_n], x);$
 $F = Zp$ Interp($n = 1 + 1 \cdot 2 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2$

Let
$$a,b \in \mathbb{Z}p[x]$$
 plarge.
How can we multiply $C = a \times b$?
Idea:
 $C(x) = a(xy) \cdot b(x)$ $deg(c) = deg(a) + deg(b)$.
 \Rightarrow $C(\alpha_1) = a(\alpha_1) \cdot b(\alpha_1)$ $Nead n = deg(c) + 1 points$
Interpolate $C(\alpha_1) = a(\alpha_2) \cdot b(\alpha_2)$
 \vdots $C(\alpha_1) = a(\alpha_2) \cdot b(\alpha_2)$
 \vdots $C(\alpha_1) = a(\alpha_2) \cdot b(\alpha_2)$
 \vdots $C(\alpha_1) = a(\alpha_2) \cdot b(\alpha_2)$