Let F be a field. Given $n \geqslant 1$ distinct points $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$ and values $y_{1}, y_{2}, \ldots, y_{n} \in F$ find $f(x) \in F[x]$ sit. $f\left(\alpha_{i}\right)=y_{i}$.
Theorem: There exists a unique $f(x) \in F[x]$ with $\operatorname{deg}(f) \leqslant n-1$
Satisfying $f\left(\alpha_{i}\right)=y_{i}$.

$$
\begin{array}{ll}
n=3 & \\
\alpha_{1}=1 & y=1 \\
\alpha_{2}=2 & \Rightarrow y_{2}=2 \\
\alpha_{3}=3 & \Rightarrow y_{3}=2
\end{array} \quad \Rightarrow \begin{aligned}
& y_{1}=a \cdot 1+b \cdot 1+c \\
& y_{2}=4 a+2 b+c \\
& y_{3}=9 a+3 b+c .
\end{aligned}
$$

Solving a linear system, $n \times n$, using Eanssian elimination does $O\left(n^{3}\right)$ arithmetic ops. in F_{0}
Two $O\left(n^{2}\right)$ methods
Lagrange interpolation
Let $L(x)=\left(\underline{x}-\alpha_{1}\right)\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{1}\right)$.
Let $L i(x)=L(x) /\left(x-\alpha_{i}\right)$ for $1 \leq i \leq n$.
Write $f(x)=a_{1} \cdot L_{1}(x)+a_{2} \cdot L_{2}(x)+\cdots+a_{n} \cdot L_{n}(x)$. \uparrow have degree $n-1$.
Require $f\left(\alpha_{i}\right)=y_{i}$.

$$
\begin{aligned}
& \text { Require } f\left(\alpha_{i}\right)=y_{i} . \\
& y_{i}=f\left(\alpha_{i}\right)=a_{1} \cdot 0+\cdots+a_{i} \cdot L_{i}^{\left(\alpha_{i}\right)}+0 \cdot L_{i+1}^{\left(\alpha_{i}\right)+\cdots+a_{n} \cdot 0} \\
& \Rightarrow a_{i}=y_{i} / L_{i}\left(\alpha_{i}\right) \quad \text { (this proves existence.). }
\end{aligned}
$$

Newton interpolation.
write $f(x)=b_{0}+b_{1}\left(x-\alpha_{1}\right)+b_{2}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)+\cdots+b_{n-1}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n-1}\right)$.
Require $f\left(\alpha_{i}\right)=y_{i}$.

$$
\begin{aligned}
& y_{1}=f\left(\alpha_{1}\right)=b_{0} \Rightarrow b_{0}=y_{1} \\
& y_{2}=f\left(\alpha_{2}\right)=b_{0}+b_{1}\left(\alpha_{2}-\alpha_{1}\right)+0 . \Rightarrow b_{1}=\left(y_{2}-b_{0}\right) /\left(\alpha_{2}-\alpha_{1}\right) . \\
& y_{3}=f\left(\alpha_{3}\right)=b_{0}+b_{1}\left(\alpha_{3}-\alpha_{1}\right)+b_{2}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)+0 .
\end{aligned}
$$

Example. $f(1)=1, f(2)=2, f(3)=2 . \quad n=3$

$$
\begin{aligned}
x(x) & =b_{0}+b_{1}\left(x-\alpha_{1}\right)+b_{2}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \\
f(x) & =b_{0}+b_{1}(x-1)+b_{2}(x-1)(x-2) \\
1=f(1) & =b_{0}+0+0 \Rightarrow b_{0}=1 \\
2=f(2) & =1+b_{1}(1) \Rightarrow b_{1}=(2-1) / 1=1 . \\
2=f(3) & =1+1 \cdot 2+b_{2}(2)(1) \\
2 & =3+2 b_{2} \Rightarrow b_{2}=-\frac{1}{2} \text {. Newton form } \\
f(x) & =1+1(x-1)-\frac{1}{2}(x-1)(x-2) . \\
f(x) & =-\frac{1}{2} x^{2}+\frac{5}{2} x-1 \leftarrow \text { standard form. }
\end{aligned}
$$

Maple. $F=\mathbb{Q} \quad \operatorname{interp}\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right],\left[y_{1}, \ldots, y_{n}\right], x\right) ;$

$$
F=\mathbb{Z}_{p} \operatorname{Interp} \text { " } " \text { " mad } p
$$

Example. $\quad \frac{f(x, y)=\left(x^{2}+1\right)+(x) \cdot j^{\prime} \in \mathbb{Z}_{5}[x][y]}{f(0, y)=1}$

$$
\begin{aligned}
& f(0, y)=\left(\begin{array}{l}
1 \\
2 \\
f(1, y)=\left(\begin{array}{l}
0 \\
1
\end{array} \cdot y\right. \\
f(2, y)= \\
2
\end{array}\right)+y \\
& f(x, y)=x^{2}+1 \quad \underset{~}{1} \cdot y
\end{aligned}
$$

Interp $(0,1,2],[1,2+y, 2 y], x) \operatorname{mad} 5$;
Proof of uniqueness:
Let $f(x)$ and $g(x)$ that satisty the couctions of The theorem. Then

$$
f\left(\alpha_{i}\right)=y_{i}=g\left(\alpha_{i}\right)
$$

$$
\begin{aligned}
& (x-1)(x-2) \left\lvert\, \begin{array}{l}
h(x) \\
(x-1)(x-3) \mid \\
h(x)
\end{array}\right. \\
& (x)(x-3) \mid h(x)
\end{aligned}
$$

$$
\left.\left.\begin{array}{ll}
& f\left(\alpha_{i}\right)=y_{i}=g\left(\alpha_{i}\right) \\
\Rightarrow & f\left(\alpha_{i}\right)-g\left(\alpha_{i}\right)=0
\end{array} \quad(x-1)(x-2)(x-3) \right\rvert\, h(x)\right)
$$

$$
\Rightarrow \quad x-\alpha_{i} \mid f(x)-g(x) \text {. As } 1 \leq i \leq n
$$

So what? Interpolation is a key tool for speeding up algorithms.

Let $a, b \in \mathbb{Z} p[x] \quad p$ large.
How can we multiply $c=a \times b$?

$$
\begin{aligned}
& \text { Idea: } \\
& c(x)=a(x) \cdot b(x) \quad \operatorname{deg}(c)=\operatorname{deg}(a)+\operatorname{deg}(b) . \\
& \Rightarrow \quad\left\{\begin{array}{l}
C\left(\alpha_{1}\right)=a\left(\alpha_{1}\right) \cdot b\left(\alpha_{1}\right) \\
C\left(\alpha_{2}\right)=a\left(\alpha_{2}\right) \cdot b\left(\alpha_{2}\right)
\end{array} \quad \text { Need } n=\text { reg }(c)+1\right. \text { points } \\
& \text { Interpolate }\left\{\begin{array}{c}
C\left(\alpha_{2}\right)=a\left(\alpha_{2}\right) \cdot b\left(\alpha_{2}\right) \\
\vdots \\
c\left(\alpha_{n}\right)=a\left(\alpha_{n}\right) \cdot b\left(\alpha_{n}\right) \text {. }
\end{array}\right. \\
& \text { former. }
\end{aligned}
$$

