An Asymptotic Expansion of Ramanujan

William Galway

Department of Mathematics
University of Illinois, Urbana-Champaign
Urbana IL 61801
galway@math.uiuc.edu

On page 324 of Ramanujan's second notebook we find

$$2\sum_{n\geq 0} (-1)^n \left(\frac{1-t}{1+t}\right)^{n(n+1)}$$

$$\sim 1+t+t^2+2t^3+5t^4+17t^5\cdots$$

as t tends to 0+.

To see that the leading coefficient might be correct, let t = 0 and we have

$$2\sum_{n\geq 0} (-1)^n = 2(1/2)$$
$$= 1$$

Notation

We want to study the coefficients a_m in the asymptotic expansion of

$$F(q) = 2 \sum_{n\geq 0} (-1)^n q^{n(n+1)}$$

$$\sim \sum_{m\geq 0} a_m t^m$$

where q = (1-t)/(1+t). The first series converges for |q| < 1, and thus for $\Re(t) > 0$. F(q) is one of L. J. Rogers' false theta functions.

For technical reasons, it is easier to work with

$$s = t/(1+t)$$

SO

$$t = s/(1-s)$$

and

$$q = \frac{1 - t}{1 + t} = 1 - 2s$$

The corresponding region of convergence is $|s-\frac{1}{2}|<\frac{1}{2}.$

Writing the expansion in s as

$$F(q) \sim \sum_{m>0} b_m s^m$$

and using

$$s^{j} = \left(\frac{t}{1+t}\right)^{j}$$
$$= \sum_{k \ge 0} {\binom{-j}{k}} t^{j+k}$$

the expansion in t is given by

$$a_{m} = \sum_{j+k=m} {\binom{-j}{k}} b_{j}$$
$$= \sum_{j=0}^{m} {\binom{-j}{m-j}} b_{j}$$

Thus $F(q) \in \mathbb{Z}[[s]] \Rightarrow F(q) \in \mathbb{Z}[[t]].$

m	a_m	b_m
0	1	1
1	1	1
2	1	2
3	2	5
4	5	15
5	17	54
6	72	233
7	367	1191
8	2179	7080
9	14750	48025
10	112023	365761
11	942879	3087824
12	8708912	28604041
13	87563937	288378765
14	951933849	3142778610
15	11125383714	36811949617

A Formula from the "Lost" Notebook

$$\sum_{n\geq 0} (-1)^n q^{n(n+1)} = \sum_{n\geq 0} \frac{(q; q^2)_n^2 q^n}{(-q; q)_{2n+1}}$$

where

$$(a;q)_n = \prod_{j=0}^{n-1} (1 - aq^j)$$

(A proof appears in Ramanujan's "Lost" Notebook. I. Partial θ -Functions, by George E. Andrews, Advances in Mathematics Vol. 41. No. 2, August 1981.)

Writing each term as

$$T_n = \frac{(q; q^2)_n^2 q^n}{(-q; q)_{2n+1}}$$

we see that $T_n = O(s^{2n})$, $(s \to 0)$, since

$$(q; q^{2})_{n} = \prod_{j=0}^{n-1} (1 - q^{2j+1})$$

$$= \prod_{j=0}^{n-1} O(s)$$

$$= O(s^{n})$$

while the denominator in T_n is bounded away from 0, and q = O(1) as $s \to 0$.

Further, for $s \in (0, 1/2)$, so $q \in (0, 1)$, we have

$$T_{n+1} = q \frac{(1 - q^{2n+1})^2}{(1 + q^{2n+2})(1 + q^{2n+3})} T_n$$

$$\leq q T_n$$

$$T_{n+k} \leq q^k T_n$$

thus

$$\sum_{k\geq 0} T_{n+k} \leq T_n \sum_{k\geq 0} q^k$$

$$= T_n/(2s)$$

$$= O(s^{2n-1})$$

We can refine this error bound to get

$$\sum_{k\geq 0} T_{n+k} = T_n + \sum_{k\geq 0} T_{n+1+k}$$

$$= O(s^{2n}) + O(s^{2n+1})$$

$$= O(s^{2n})$$

This gives

$$F(q) = 2 \sum_{n \ge 0} (-1)^n q^{n(n+1)}$$
$$= \sum_{n=0}^{N-1} 2T_n + O(s^{2N})$$

Expanding each T_n as a power series in s (or t) through the 2N-1'th coefficient gives the first 2N coefficients for F(q). N=3 gives the six coefficients computed by Ramanujan.

Integrality of the coefficients

To show that $F(q) \in \mathbb{Z}[[t]]$ it suffices to show that $2T_n \in \mathbb{Z}[[s]]$ for every n.

For $k \in \mathbb{Z}$ we have

$$q^k \in 1 + 2s\mathbb{Z}[[s]]$$

SO

$$1 - q^k \in 2s\mathbb{Z}[[s]] \subset 2\mathbb{Z}[[s]]$$
$$1 + q^k \in 2 + 2s\mathbb{Z}[[s]]$$

Writing

$$2T_{n} = \frac{2(q; q^{2})_{n}^{2}}{(-q; q)_{2n+1}}q^{n}$$

$$= \frac{2\prod_{j=0}^{n-1}(1-q^{2j+1})^{2}}{\prod_{j=0}^{2n}(1+q^{j+1})}q^{n}$$

the numerator of the ratio contains 2n+1 factors of the form $2\mathbb{Z}[[s]]$, while the denominator contains 2n+1 factors of the form $2+2s\mathbb{Z}[[s]]$. The desired result follows since $q^n \in \mathbb{Z}[[s]]$, and since

$$\frac{2\mathbb{Z}[[s]]}{2+2s\mathbb{Z}[[s]]} = \frac{\mathbb{Z}[[s]]}{1+s\mathbb{Z}[[s]]} \subseteq \mathbb{Z}[[s]]$$

Areas for further work

- Can we give an asymptotic estimate for the coefficients?
- Study the asymptotic behavior of F(q) as q approaches other roots of unity.