Contents
Next: About this document
Up: Approximations to via the
Previous: A Sixteenth Order
References
- 0
-
R. Bellman, A Brief Introduction to Theta Functions
(Holt, Rinehart and Winston, New York, 1961).
[1]
- 1
- B.C. Berndt,
Ramanujan's Notebooks, Part III,
Springer, New York, 1991.
[1] [2]
- 2
- B.C. Berndt,
On a certain theta-function in a letter of
Ramanujan from Fitzroy House,
Ganita, 43 (1992), 33--43.1992), 33--43.
[1]
- 3
- B.C. Berndt and R.A. Rankin,
Ramanujan --- Letters and Commentary,
Amer. Math. Soc. History of Mathematics Series,
Vol. 9, 1995.
[1]
- 4
- J.M. Borwein and P.B. Borwein,
Pi and the AGM --- A Study in Analytic Number Theory and
Computational Complexity, Wiley, N.Y., 1987.
[1] [2] [3] [4] [5] [6]
- 5
- J.M. Borwein and P.B. Borwein,
Approximating with Ramanujan's modular equations,
Rocky Mountain J. Math., 19 (1989), 93--102.
[1]
- 6
- J.M. Borwein and P.B. Borwein,
A cubic counterpart of Jacobi's identity and the AGM,
Trans. Amer. Math. Soc., 323 (1991), 691--701.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
- 7
- J.M. Borwein, P.B. Borwein and F.G. Garvan,
Some cubic modular identities of Ramanujan,
Trans. Amer. Math. Soc., 343 (1994), 35--47.
[1] [2] [3] [4] [5] [6]
- 8
- J.M. Borwein, P.B. Borwein and D.H. Bailey,
Ramanujan, modular equations, and approximations to pi or
how to compute one billion digits of pi,
Amer. Math. Monthly, 96 (1989) 201--219.
[1] [2] [3] [4] [5] [6]
- 9
- D.A. Buell,
Binary Quadratic Forms --- Classical Theory and
Modern Computations, Springer, New York, 1989.
[1]
- 10
- H. Cohen and J. Oesterlé,
Dimensions des espaces de formes modulaires, in
Modular Functions in One Variable VI, International Summer School
of Modular Functions, Bonn 1976, Lecture Notes in Math., vol. 627,
Springer, N.Y., 1976, 69--78.
[1]
- 11
- L.E. Dickson,
The Theory of Numbers, Volume III, Quadratic and Higher Forms,
Chelsea, New York, 1952.
[1]
- 12
- N. Koblitz,
Introduction to Elliptic Curves and Modular Forms,
Springer, New York, 1984.
[1]
- 13
- S. Ramanujan,
Notebooks (2 volumes), Tata Institute of Fundamental Research,
Bombay, 1957.
[1] [2]
Contents
Next: About this document
Up: Approximations to via the
Previous: A Sixteenth Order