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Conjectures

Riemann Hypothesis (RH):
p a nontrivial zero of ((s) = Re(p) = 1/2.

Generalized /Extended RH (GRH/ERH):

Similar conjecture(s) for Dirichlet L-functions, other
¢ and L-functions.

Pair correlation conjecture & friends: The zeros of
C(s) and its generalizations are distributed like
eigenvalues of random Hermitian matrices. More
precisely, zeros of ((s) distributed like eigenvalues
of random matrices taken from the Gaussian unitary
ensemble (GUE). Other buzzwords:  “random
matrix theory”, “spectral interpretation of zeros”,
“Montgomery-Odlyzko law”, “quantum chaos".

These conjectures imply RH/GRH/ERH.

Other(?):
All zeros of ((s) are simple.



Notation

s=o0+1t
((s) = Zn‘s o>1
_G(s)
=
_ 7_‘_8—1/2 P((l B S)/Q)

[(s/2)

N(T) :=#{p: ¢((p) =0,0 < Re(p) <1,0 <Im(p) < T}

counting zeros according to their multiplicity.



Twisting ((s)

(12 +it)
Z(1) = Vx(1/2 + it)
If t € R then Z(t) € R and |Z(t)| = |C(1/2 + it)].

When t € R, an alternate formulation for Z(t) is

1t t
Y(t) :=ImInT (Z + 5) —5 In(7)

Z(t) = e?M¢(1/2 + it)

Stirling’s formula gives a good approximation to ¥(t):

t t t 1 7
o(t) = 5n (27) >~ 8 " st T 5reoe TOU)




Z(t) and sin(d¥(t))
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Z(t) and sin(d¥(t))

1000 < ¢ < 1010




Checking the RH to height T

Basic approach:

e Try to find all sign changes of Z(t), 0 <t < T.
Don't try too hard.

e Compare number of zeros found against N (7). If
counts agree then RH is true up to 7.

Note, don't need to locate zeros very precisely.

Difficulties:

e How and where to compute Z(t)?
e How to compute N(T)7?

e What if there is a multiple zero (or nearly multiple
zero) of Z(t)?



Where to compute 7 (t)

Define g,,, the nth Gram point, to be the solution to
¥ (gn) = nm. lLe., g, is the nth zero of sin(¥(t)).

Gram’s law: As a rule of thumb

¢ <_1>nZ<gn> >0
e There is one zero of Z(t) between g, and g, 1.

e N(gp) =n-+1.

This suggests we start by computing Z(g,), and then
find small (or zero) h,, such that (—=1)"Z (g, +h,) > 0
and g, + h, < gn+1 + hpst1.  Turing showed how
knowledge about h, can be used to compute N(T)
exactly.



How to compute N(T) . ..

We have

N(T) = 29(T) + 1 + S(T)

s

where S(T") can be given as a path integral. One can
show that S(T) = O(In(T)) as T — c.

This implies

N(T) = %m <%> - % + O(In(T)).

Backlund gave an explicit error bound for the
approximation. This is a good start . . ..



. . . how to compute N (T

A theorem of Littlewood shows that S(7") goes to zero
“on average':

/ ) S(t)dt < In(T)

so that

1 (7
ZJI—]EI;OT/() S(t)dt = 0.

Turing gave an explicit bound on

T>
S(t) dt

T

and showed how this can be used to compute N(7T)
exactly (for certain T).



Turing’s method

Suppose h,, = 0 for some m, and that h,, are “small”
for n near m. Note that

S(gm) = N(gm) —m —1 € Z,

and, in fact, S(g¢,,) € 27Z since any zeros off the
critical line come in pairs, while the sign of Z(g.,)
gives parity of number of zeros on the critical line,
and, by assumption, (—=1)""Z(g,,) > 0.

Thus, to show that S(g,,) =0, i.e. N(gm) =m+1, it
suffices to show —2 < S(¢g,,) < 2. Assume otherwise.
If h,, remains small forn =m+1m+2,..., m+k
then S(t) cannot change by much over an interval of
length k. This contradicts Turing's bound once k is
large enough.
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How to compute Z(t)

For small ¢, or high accuracy, can use Euler-Maclaurin
summation to compute ((1/2 + it) [CO92]. Then use
Z(t) = et (1/2 +it). Requires t'T¢ operations.

Otherwise, use the Riemann-Siegel formula for Z(t),
t € R. This requires t!/21€ operations:

Z(t) = 2 Z Cos(ﬁ(tz/% t1In(n)

+ (=D)N R/ Y Clz)(V2r /)"

+ Rk (t)

where N := { t/(QW)J and 2 := 1—2(1//(21) — N).

Gabcke gives series expansions for computing Ci(t),
and good bounds for Rx(t) [Gab79].

In practice, K < 2 suffices. When Z (%) is nearly zero,
more accuracy might be needed, and one can fall-back
on Euler-Maclaurin summation.
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Recent Computations

e Rigorous computational proof of RH for first 1.5-10"
zeros, by van de Lune et. al. [vdLtRW86].

e Ongoing networked computation coordinated by
Sebastian Wedeniwski [Wed]. 30,592,710, 000
zeros and counting.

e “Spot checking” near the 10?°-th and 10%!-st zeros
(near t = 1.52-10'9 and t = 1.44-102° respectively)

by Andrew Odlyzko [OdI92, OdI98]. *“. .. several
billion high zeros ... " computed.

e Computations to check GRH/ERH and related
conjectures [Rum93, KS99, Rub98].
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Further reading

Edwards for historical background [Edw74].

Odlyzko (& Schonhage) on computing ((o + it)
using t¢ operations for many values of ¢ [0dI92,
0S388].

Rubinstein on a completely different approach to
computing ((s), L(s,x), etc.

Borwein, Bradley and Crandall for survey of many
methods for computing ((s) [BBCOO].

In addition to above, Montgomery [Mon73], Katz
& Sarnak [KS99] on pair correlation conjecture etc.
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