FAST MOREAU-YOSIDA APPROXIMATE

YVES LUCET

ABSTRACT. Adapting the same idea from the Fast-Legendre transform, we
note that the Moreau-Yosida Approximate can be factored as several one-
dimensional transforms. Similarly, the monotonicity of the convex subdiffer-
ential implies the monotonicity of the proximal point mapping. Hence the
quadratic worst-case time complexity to compute the Moreau-Yosida approx-
imate on a grid can be reduced to log-linear.

In fact, the proximal mapping is Lipschitz for any convex function. Hence
we present a linear-time algorithm to compute the Moreau-Yosida approximate
of convex functions. It has a linear worst-case computation time without using
the Fast Legendre Transform algorithm. Hence it avoids computing parameters
in the dual space.
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1. INTRODUCTION
2. FAST MOREAU-Y OSIDA APPROXIMATE

For an extended real-valued function f : R? — R U {oo} The Moreau-Yosida
approximate

: lle — ylI?
F := inf —
NE) yléle[f ®) + =53]
can be factored as d one-dimensional approximates:
1 o lza —yal®
F = inf [——— +--- f[—— .l
A(#) y11%112[ 2\ o yldnelR[ 2A + -]

Hence a fast one-dimensional algorithm will give a fast d-dimensional algorithm.
We now recall that the proximal mapping

: llz —yll?
Py (z) := Argmin + —
/\( ) yg dl [f(y) 2 ]

i.e. the set of points where the infimum is attained, is monotone.
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Lemma. If the function f is convez, the proximal mapping is a monotone mapping
from R? to R?.

Proof. Take p a selection of Py. By definition of p we have the optimality condition

0e W +0f(p(x))

where Jf denotes the convex subdifferential:
8f(@) = {s € R : f(y) > f(z)+ {5,y — z) for all y}.
For any two points z and ', we have
x —p(z
o))
!

T2 ¢ o).

The monotonicity of the convex subdifferential implies:

z—p(x) z'—p(z)
(Eop) #(#) = p() 20,
A A
in other words
(1) (& —2',p(z) = p(z")) > |Ip(z) — p(a")[.
So p is strongly monotone for any function f. In particular, for univariate functions,
p is increasing. |

Using the same scheme as in [1, 4, 2] we can build a O((n+m) In(n+ m)) worst-
case time algorithm to compute the Moreau-Yosida approximate at m points where
n is the number of points at which we sample the function f to approximate the
infimum.

3. BUILDING A LINEAR-TIME ALGORITHM

As in [3], we can build a linear-time algorithm as soon as we can compute the
one-dimensional transform in linear-time. We use the smoothness of the proximal
mapping coupled with carefully selected grids to build the algorithm

Applying the Cauchy-Swartz inequality to (1) gives

lp(z) — p(z")l| < [lz — 2|,
in other words, any selection p of the proximal mapping Py is 1-Lipschitz. Take
two partitions y; < --- <y, and 1 < --- < Z,;,. Assume

Yitr1 —Yi = Tjp1 — x5 = h
for any integer i, j with1 <i <n—1and 1 < j < m—1. The algorithm schematized
in Table 1 computes the Moreau-Yosida approximate at all the point on the grid

(x;); by approximating the infimum with the computation of the minimum on the
grid (y;);- In other words, we compute the discrete Moreau-Yosida approximate:

E 4 p

. |~’Uj_yz'
zj o min [

at all points z;, 1 <i <mn.

Lemma. The algorithm in Table 1 computes the Moreau-Yosida approrimate in
linear-time when the function f is convex.
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Operation Complexity
Compute p(z1) by a linear search n

p(z2) is either equal to y;, := p(r1) Or Yipt1 1

p(z,) is either equal to y;,, := p(z1) or y;,, +1 1
Worst-case time complexity n + m operations

FIGURE 1. A linear-time algorithm for the Moreau-Yosida approximate.

Proof. We only need to prove that the algorithm computes the Moreau-Yosida
approximate. Since

0 <p(z;) —p(zj—1) <zj—zj1 < h

the only possibilities for p(x;) — p(x;j—1) are either 0 or h. In the first case, p(z;) =
p(z;j—1) and in the second p(x;) is the successor of p(z;_1) in the grid y; < --- < Y.
So the result is indeed a selection of the proximal mapping. Consequently, the
algorithm computes the Moreau-Yosida approximate. O

4. APPLICATION TO OTHER TRANSFORMS IN CONVEX ANALYSIS

The Lasry-Lions double envelope h, x» can be computed as several Moreau enve-
lope

hu(x) = —Fu(=Fx(2)).
It is a smooth function [5].
Similarly the proximal hull' g5 can be written

gr(x) = haa(z) = —Fr(=Fx(2)).
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Lthe proximal hull is different from the proximal mapping.



