OBSTRUCTIONS TO RATIONAL POINTS ON CURVES COMING FROM THE NILPOTENT GEOMETRIC FUNDAMENTAL GROUP

JORDAN ELLENBERG

Let X be a hyperbolic curve over a number field K. Hyperbolic means that either $g \geq 2$, or $g=1$ and ≥ 1 puncture, or $g=0$ and ≥ 3 punctures. Let S be the set of primes of bad reduction. Assume there is a point $b \in X(K)$.

Recall: There is a map

$$
X(K) \rightarrow H^{1}\left(G_{K}, \pi_{1}\left(X_{\bar{K}}\right)\right)
$$

where $\pi_{1}\left(X_{\bar{K}}\right)$ is an abbreviation for $\pi_{1}^{\text {et }}\left(X_{\bar{K}}\right)$, which is isomorphic to the profinite completion of $\pi_{1}^{\mathrm{top}}(X(\mathbb{C}))$. What is this map? Given a finite Galois cover $Y_{\bar{K}} \rightarrow X_{\bar{K}}$ with a model $\pi: Y \rightarrow X$ with $\pi^{-1}(b)(K) \neq \emptyset$, and given $x \in X(K)$, there exists a unique twist $\pi^{\xi}: Y^{\xi} \rightarrow X$ of Y such that $\pi_{\xi}^{-1}(x)(K) \neq \emptyset$. We get a map $X(K) \rightarrow H^{1}\left(G_{K}, G\right)$ sending each x to the corresponding ξ. The section conjecture says that the induced map

$$
X(K) \rightarrow H^{1}\left(G_{K}, \pi_{1}^{\mathrm{et}}\left(X_{\bar{K}}\right)\right)
$$

is a bijection.
It is much easier to consider groups smaller than $\pi_{1}^{\text {et }}\left(X_{\bar{K}}\right)$. For instance, one can write $\pi^{[n]}$ for $\pi_{1}^{\text {et }}\left(X_{\bar{K}}\right)^{\text {pro- } p} / L^{n} \pi_{1}^{\text {et }}\left(X_{\bar{K}}\right)^{\text {pro- } p}$. So we get

$$
X(K) \rightarrow H^{1}\left(G_{K}, \pi_{1}^{[n]}\right)
$$

and these fit together in a diagram

where $T_{p} J$ is the Tate module. There is also the diagram

Date: February 6, 2007.

When $n=2$, the map $X(K) \rightarrow H^{1}\left(G_{K}, T_{p} J\right)$ factors through the descent map $J(K) \rightarrow$ $H^{1}\left(G_{K}, T_{p} J\right)$.

Note: $X(K)$ is contained in the image of θ in $H^{1}\left(G_{K}, \pi_{1}^{[2]}\right)$.
There is an exact sequence in Galois cohomology

$$
H^{1}\left(G_{K}, \pi_{1}^{[3]}\right) \rightarrow H^{1}\left(G_{K}, \pi_{1}^{[2]}\right) \xrightarrow{\delta} H^{2}\left(G_{K}, \operatorname{ker}\left(\pi_{1}^{[3]} \rightarrow \pi_{1}^{[2]}\right)\right)
$$

Note that $\pi_{1}^{[3]}$ sits in a sequence

$$
1 \rightarrow M \rightarrow \pi_{1}^{[3]} \rightarrow \pi_{1}^{[2]} \rightarrow 1
$$

Minhyong, in his talk, had

$$
H^{1}\left(G_{K}, U^{2}\right) \xrightarrow{\delta} H^{1}\left(G_{K}, U^{3} \backslash U^{2}\right),
$$

which is our δ tensored with \mathbb{Q}_{p}.
In fact, let $T=\{$ bad primes $\} \cup\{p\}$ and write

Then δ is an obstruction to K-points of the Jacobian arising from K-points of X.
Remark 0.1. In general, given a central extension

$$
1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1
$$

the map

$$
H^{1}(G, C) \rightarrow H^{2}(G, A)
$$

is a quadratic form; i.e., $\delta(x+y)-\delta(x)-\delta(y)$ is bilinear.
In our situation, the quadratic form turns out to be cup product for

$$
\begin{aligned}
\bigwedge^{2} \pi_{1}^{[2]} & \rightarrow M \\
x, y & \mapsto[x, y] .
\end{aligned}
$$

We get

$$
\operatorname{Sym}^{2} H^{1}\left(G_{T}(K), \pi_{1}^{[2]}\right) \rightarrow H^{2}\left(G_{T}(K), \bigwedge \pi_{1}^{[2]}\right) \xrightarrow{m} H^{2}\left(G_{T}(K), M\right) .
$$

Suppose $p \neq 2$. Then $\delta(x)=\frac{1}{2} m(x \cup x)+L(x)$ with L linear.
Example 0.2. Suppose $X=\mathbb{P}^{1}-\{0,1, \infty\}$. Let b be a tangential base point at 0 . Then $\pi_{1}^{[2]}=\mathbb{Z}_{p}(1)^{2}$ (i.e., $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ as group, with G_{K} acting via the cyclotomic character), and $J=\mathbb{G}_{m}^{2}$. The map $X \rightarrow J$ sends t to $(t, 1-t)$. Now $\pi_{1}^{[3]}$ is the Heisenberg group, which sits in an exact sequence

$$
1 \rightarrow M \rightarrow \pi_{1}^{[3]} \rightarrow \mathbb{Z}_{p}(1)^{2} \rightarrow 1
$$

with $M=\bigwedge^{2} \pi^{[2]}=\bigwedge^{2} \mathbb{Z}_{p}(1)=\mathbb{Z}_{p}(2)$. Now

$$
\delta: H^{1}\left(G_{K}, \mathbb{Z}_{p}(1)^{2}\right) \rightarrow H^{2}\left(G_{K}, \mathbb{Z}_{p}(2)\right)
$$

and $J(K)=K^{\times} \times K^{\times}$maps into the group on the left. This sends a, b to the Hilbert symbol $(a, b) \in K_{2} K$. If $p=2$ and we work modulo 2 , this is just the quadratic Hilbert symbol $(a, b)_{2}$, which is 0 exactly when $x^{2}-a y^{2}-b z^{2}$ has a rational point. And indeed $(a, 1-a)=0$ in $K_{2} K$. In this case δ is torsion. In particular, if we tensor with \mathbb{Q}_{p} (as in Minhyong's talk), then δ becomes 0 . (Maybe this happens in all cases?) Thus $H^{1}\left(G_{K}, U^{3}\right) \rightarrow H^{1}\left(G_{K}, U^{2}\right)$ is surjective. Here δ is torsion, but not usually trivial; e.g., it can tell you something about the image of $X(\mathbb{R})$ in $J(\mathbb{R})$ or about the image of $X\left(K_{v}\right)$ in $J\left(K_{v}\right) / \ell J\left(K_{v}\right)$.

