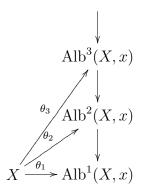
HIGHER ALBANESE MANIFOLDS

RICHARD HAIN

Goal: Suppose X is a smooth variety over \mathbb{C} and $x \in X$. We want to make a tower



where $Alb^{1}(X, x)$ is the classical Albanese variety of X^{1} .

1. Unipotent completion

Let Γ be a discrete group. Let k be a field of characteristic 0. A unipotent group is a closed subgroup of the subgroup of $GL_n(k)$ consisting of upper triangular matrices with 1s on the diagonal. Unipotent groups correspond to nilpotent Lie algebras via the logarithm and exponential maps, which are polynomial bijections.

Define the pro-unipotent group

$$\Gamma_{/k}^{\mathrm{un}} := \varprojlim_{\substack{\rho: \ \Gamma \to U(k) \\ \mathrm{Zariski \ dense} \\ U \ \mathrm{unipotent}}} U.$$

It is also π_1 of the Tannakian category of unipotent representations of Γ over k.

Define the pro-nilpotent Lie algebra

$$\operatorname{Lie}(\Gamma_{/k}^{\operatorname{un}}) := \lim \operatorname{Lie}(U).$$

A homomorphism $\Gamma \to U(k)$ from Γ to the k-points of a unipotent k-group U induces a homomorphism $\Gamma_{/k}^{\mathrm{un}} \to U$. The original representation factors $\Gamma \to U(k) \to \Gamma_{/k}^{\mathrm{un}} \to \Gamma^{\mathrm{un}}(k)$.

Let J be the kernel of the augmentation map $k\Gamma \xrightarrow{\epsilon} k$ sending each $\gamma \in \Gamma$ to 1. Define

$$(k\Gamma)^{\wedge} := \varprojlim_r (k\Gamma/J^r).$$

Then

$$\Gamma_{/k}^{\mathrm{un}} = \{ x \in (k\Gamma)^{\wedge} : \Delta x = x \otimes x \} - \{ 0 \}.$$

Date: February 5, 2007.

¹The original reference is Unipotent variations of mixed Hodge structure: Hain-Zucker, Invent. Math. 88 (1987).

Base change: if K/k is any field extension, then $\Gamma_K^{un} = \Gamma_k^{un} \otimes_k K$. In particular, $\Gamma_k^{un} = \Gamma_{\mathbb{Q}}^{un} \otimes_{\mathbb{Q}} k$. **Example 1.1.** If Γ is the free group $\langle x_1, \ldots, x_n \rangle$, then $x_j \mapsto \exp(X_j)$ defines a map Γ to $\mathbb{Q}\langle\langle X_1, \ldots, X_n \rangle\rangle$, which contains the completed free Lie algebra $\mathbb{L}(X_1, \ldots, X_n)^{\wedge}$. Then $\text{Lie } \Gamma_{/\mathbb{Q}}^{un} = \mathbb{L}(X_1, \ldots, X_n)^{\wedge}$.

Example 1.2.

$$\operatorname{Lie}(\pi_1^{\operatorname{un}}(\operatorname{genus} - g \operatorname{curve}, \ast)) = \mathbb{L}(A_1, \dots, A_g, B_1, \dots, B_g)^{\wedge} / \left(\sum_{j=1}^g [A_j, B_j]\right)$$

2. Profinite case

Let Γ be profinite. Let ℓ be a prime number. Then

$$\Gamma_{\mathbb{Z}_{\ell}}^{\mathrm{cts,un}} := \varprojlim_{\substack{\rho: \ \Gamma \to U(\mathbb{Q}_{\ell}) \\ \mathrm{cts, \ Zariski \ dense} \\ U \ \mathrm{unipotent}}} U.$$

Fact: If Γ is discrete, then

$$\hat{\Gamma}^{\rm cts, un}_{/\mathbb{Q}_{\ell}} = \Gamma^{\rm un}_{/\mathbb{Q}_{\ell}}.$$

3. DE RHAM VERSION

Chen's iterated integral:² Let M be a smooth manifold. Let $\omega_1, \ldots, \omega_r \in E^1(M)$ (smooth 1-forms). Let $\gamma \colon [0,1] \to M$ be a piecewise smooth path. Chen defined

$$\int_{\gamma} \omega_1 \cdots \omega_r = \int \cdots \int_{0 \le t_1 \le \cdots \le t_r \le 1} f_1(t_1) \cdots f_r(t_r) dt_1 \cdots dt_r$$

where $\gamma^* \omega_j = f_j(t) dt$.

Remark 3.1. This works equally well for $\omega_j \in E^1(M) \otimes_{\mathbb{R}} A$ for any associative algebra A. Example 3.2. Let $M = \mathbb{C} - \{0, 1\}$. Then

$$\int_0^x \frac{dz}{1-z} \frac{dz}{z} = \int_0^x \left(\sum_{n=0}^\infty z^n \, dz\right) \frac{dz}{z}$$
$$= \int_0^x \left(\sum_{n=1}^\infty \frac{z^n}{n}\right) \frac{dz}{z}$$
$$= \sum_{n=1}^\infty \frac{z^n}{n^2} \Big|_0^x$$
$$= \sum_{n=1}^\infty \frac{x^n}{n^2}$$
$$= \ln_2 x,$$

the dilogarithm function.

²Basic reference: K.-T. Chen, Bull. AMS, 1977. See R. Hain, *The geometry of the MHS on the fundamental group*, Proc. Symp. Pure Math., 46 (1987) for an introduction.

Proposition 3.3. For loops γ and μ starting at the same point,

$$\int_{\gamma\mu\gamma^{-1}\mu^{-1}} \omega_1 \omega_2 = \begin{vmatrix} \int_{\gamma} \omega_1 & \int_{\gamma} \omega_2 \\ \int_{\mu} \omega_1 & \int_{\mu} \omega_2 \end{vmatrix}$$

For fixed $\omega_1, \ldots, \omega_r$, we may view

$$\int \omega_1 \cdots \omega_n$$

as a function $PM \to \mathbb{R}$ on the path space or $P_{x,x}M \to \mathbb{R}$ on the loop space.

Definition 3.4. Let $Ch(P_{x,x}M)$ be the \mathbb{R} -span of $\{\int \omega_1 \cdots \omega_r \colon P_{x,x}M \to \mathbb{R}\}$.

The space $Ch(P_{x,x}M)$ is a Hopf algebra, with operations inspired by the following identities:

Product:

$$\int_{\alpha} \omega_1 \cdots \omega_r \int_{\alpha} \omega_{r+1} \cdots \omega_{r+s} = \sum_{\sigma \in \operatorname{Sh}(r,s)} \int_{\alpha} \omega_{\sigma(1)} \cdots \omega_{\sigma(r+s)}$$

where Sh(r, s) is the set of permutations σ of $\{1, \ldots, r+s\}$ such that $\sigma^{-1}(1) < \cdots < \sigma^{-1}(r)$ and $\sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s)$ (with the convention that $\int_{\gamma} \phi_1 \cdots \phi_s = 1$ if s = 0).

Coproduct:

$$\int_{\alpha\beta}\omega_1\cdots\omega_r=\sum_{j=0}^r\int_{\alpha}\omega_1\cdots\omega_j\int_{\beta}\omega_{j+1}\cdots\omega_r.$$

Antipode:

$$\int_{\gamma^{-1}} \omega_1 \cdots \omega_r = (-1)^r \int_{\gamma} \omega_r \cdots \omega_1.$$

Definition 3.5. $F: P_{x,x}M \to A$ is a homotopy functional if all pairs of homotopic paths γ_0 and γ_1 (in which the homotopy does not move the endpoints) satisfy $F(\gamma_0) = F(\gamma_1)$.

Let $H^0(Ch(P_{x,x}M))$ be the subspace of homotopy functionals. This is a Hopf subalgebra, so Spec $H^0(Ch(P_{x,x}M))$ is a group scheme over \mathbb{R} . Let $L_rH^0(Ch(P_{x,x}M))$ be the span of the elements of $H^0(Ch(P_{x,x}M))$ of length $\leq r$. Since the diagonal preserves the length filtration

$$\Delta: L_r H^0(\operatorname{Ch}(P_{x,x}M) \to \sum s + t = rL_s H^0(\operatorname{Ch}(P_{x,x}M) \otimes L_t H^0(\operatorname{Ch}(P_{x,x}M)))$$

This implies that $L_r H^0(Ch(P_{x,x}M \text{ is a pro-unipotent group})$.

Let $\pi_1^{\mathrm{un}}(M, x)_{\mathbb{R}}$ be $\Gamma_{\mathbb{R}}^{\mathrm{un}}$ where $\Gamma := \pi_1(M, x)$. By the product identity given above, there is an "integration" map

$$\pi_1(M, x) \to \operatorname{Hom}_{\mathbb{R} ext{-algebras}}(H^0(\operatorname{Ch}(P_{x,x}M)), \mathbb{R}) = \left(\operatorname{Spec} H^0(\operatorname{Ch}(P_{x,x}M))\right)(\mathbb{R}).$$

With the group structure on the right hand side induced by the comultiplication and antipode, this map is a group homomorphism. It induces a homomorphism of pro-algebraic groups

$$\pi_1^{\mathrm{un}}(M, x)_{\mathbb{R}} \to \operatorname{Spec} H^0(\operatorname{Ch}(P_{x,x}M)).$$

Theorem 3.6 (Chen). The following three equivalent statements hold:

(1) $\pi_1^{\mathrm{un}}(M, x)_{\mathbb{R}} = \operatorname{Spec} H^0(\operatorname{Ch}(P_{x,x}M))$ (i.e., the homomorphism just constructed is an isomorphism).

- (2) $\mathcal{O}(\pi_1^{\mathrm{un}}(M, x)_{\mathbb{R}}) = H^0(\mathrm{Ch}(P_{x,x}M))$ as Hopf algebras.
- (3) Let $L_r H^0(Ch(P_{x,x}M))$ be the space of iterated integrals of length $\leq r$. Integration gives an isomorphism

$$L_r H^0(\operatorname{Ch}(P_{x,x}M)) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{R}\text{-vector spaces}}\left(\frac{\mathbb{R}\pi_1(M,x)}{J^{r+1}},\mathbb{R}\right).$$

Now suppose that X is a smooth projective variety over \mathbb{C} . Let $E^{\bullet}(X) = \bigoplus E^{p,q}(X)$ be the \mathbb{C} -valued smooth forms on X. Let $F^p E^{\bullet}(X) = \bigoplus_{s \ge p} E^{s,\bullet}(X)$. This extends to define a Hodge filtration of $Ch(P_{x,x}X)$: namely, $F^p Ch(P_{x,x}X)$ is defined as the span of $\int \omega_1 \cdots \omega_r$ with $\omega_j \in F^{p_j}$ and $\sum p_j \ge p$.

When X is the complement of a normal crossings divisor D in a smooth projective variety Y, then one has the C^{∞} log complex $\oplus E^{p,q}(Y \log D)$, where

$$E^{p,q}(Y \log D) := H^0(Y, \Omega^p_Y(\log D) \otimes_{\mathcal{O}_Y} \mathcal{E}^{0,p}_Y).$$

It is a fact that every element of $H^0(Ch(P_{x,x}X))$ can be represented by iterated integrals of elements of $E^{\bullet}(Y \log D)$. The Hodge filtration of $H^0(Ch(P_{x,x}X))$ is defined using the Hodge filtration of $E^{\bullet}(Y \log D)$ as in the projective case.

Example 3.7. We have $\int \frac{dz}{1-z} \frac{dz}{z} \in F^2$ and $\int d\bar{z} \, dz \in F^1$.

This restricts to define a Hodge filtration of $H^0(Ch(P_{x,x}X))$ compatible with product, coproduct, and antipode.

Theorem 3.8. This is part of the natural mixed Hodge structure on $\pi_1^{\text{un}}(X, x)$. (The weight filtration is L^{\bullet} when X is smooth and projective.)

The Lie algebra of $\pi_1^{\mathrm{un}}(X, x)$ is the dual of $\mathfrak{m}/\mathfrak{m}^2$, where \mathfrak{m} is the maximal ideal of $\mathcal{O}(\pi_1^{\mathrm{un}}(X, x)) = H^0(\mathrm{Ch}(P_{x,x}X))$ corresponding to evaluation at the trivial loop. The bracket is dual to the "cobracket" $\mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{m}/\mathfrak{m}^2 \otimes \mathfrak{m}/\mathfrak{m}^2$, which is the linear map induced by

$$\Delta - \tau \circ \Delta : H^0(\operatorname{Ch}(P_{x,x}X)) \to H^0(\operatorname{Ch}(P_{x,x}X)) \otimes H^0(\operatorname{Ch}(P_{x,x}X)),$$

where $\tau(f \otimes g) = g \otimes f$. This leads to a Hodge filtration on $\operatorname{Lie} \pi_1(X, x)$ compatible with [,] (this means that $[F^p, F^q] \subseteq F^{p+q}$). On $\operatorname{Lie} \pi_1(X, x)$

$$\cdots \supseteq F^{-3} \supseteq F^{-2} \supseteq F^{-1} \supseteq F^0 \supseteq F^1 = 0.$$

Let

$$G = \pi_1^{\mathrm{un}}(X, x)_{/\mathbb{C}}$$
$$\mathfrak{g} = \operatorname{Lie} G.$$

Then $F^0\mathfrak{g}$ is a Lie subalgebra. So we have a subgroup F^0G of G.

4. Higher Albanese Manifolds

We have $\pi_1(X, x) \xrightarrow{\rho} G \supseteq F^0 G$. Let Γ be the image of ρ .

Definition 4.1.

$$Alb(X, x) = \Gamma \backslash G / F^0 G.$$

Let $L^r\Gamma$ be the *r*-th term of the lower central series of Γ ; i.e., $\Gamma = L^1\Gamma \supseteq L^2\Gamma \supseteq \cdots$ where $L^{i+1}\Gamma = [L^i\Gamma, \Gamma]$. For each *r*, define

$$G_r = G/L^{r+1}G,$$

define Γ_r as the image of $\pi_1(X, x)$ in G_r , and define

$$\operatorname{Alb}^{r}(X, x) = \Gamma_{r} \backslash G_{r} / F^{0} G_{r}.$$

In general, these are not algebraic except when r = 1. Alb(X, x) should be considered as the inverse limit of the Alb^r(X, x).

Example 4.2. If r = 1, then $G_1 = H_1(X; \mathbb{C}) = H^{-1,0} \oplus H^{0,-1}$. Then $F^{-1} = H^{-1,0} \oplus H^{0,-1}$ and $F^0 = H^{0,-1}$. We have

$$G_1/F^0 = H^{-1,0} = H^0(\Omega^1_X)^*$$

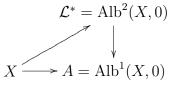
and

$$\Gamma_1 = H_1(X, \mathbb{Z}) / \text{torsion}$$

 \mathbf{SO}

$$\operatorname{Alb}^1 = H_1(X, \mathbb{Z}) \setminus H^0(\Omega^1_X)^*.$$

Example 4.3. Let A be a principally polarized abelian variety. Let Θ be the θ -divisor. Assume that Θ is irreducible and $0 \notin \Theta$. Let $X = A - \Theta$. Let \mathcal{L} be the line bundle corresponding to the line sheaf $\mathcal{O}_A(\Theta)$. Let \mathcal{L}^* be \mathcal{L} minus the zero section. Then



5. Higher Albanese Mappings

Denote $\operatorname{Lie}(\pi_1^{\operatorname{un}}(X, x)(\mathbb{C})$ by \mathfrak{g} . This is a quotient of the completion of the free complete Lie algebra $\operatorname{Lie}(H_1(X))^{\wedge}$ generated by $H_1(X;\mathbb{C})$. For simplicity, suppose that X is projective. Then

$$H_1(X; \mathbb{C}) = H^{-1,0}(X) \oplus H^{0,-1}(X)$$

Let $\{W'_j\}$ be a basis of $H^{-1,0}(X)$ and $\{W''_j\}$ be the complex conjugate basis of $H^{0,1}$. Let $\{w_j\}$ be the dual basis of $H^0(\Omega^1_X)$.

Proposition 5.1. There is a g-valued 1-form

$$\omega \in F^0\big(E^1(X) \widehat{\otimes} \mathfrak{g}\big)$$

and which is congruent to

$$\sum_{j} w_{j} W_{j}' + \overline{w}_{j} W_{j}'' \bmod [\mathfrak{g}, \mathfrak{g}]$$

and satisfies the integrability condition

$$d\omega + \frac{1}{2}[\omega, \omega] = 0.$$

When X is not compact, then one has $\omega \in W_{-1}F^0(E^1(X) \otimes \mathfrak{g})$. These statements are proved in *Higher Albanese Manifolds*, R. Hain, LNM 1246, 1987.

Define

$$T = 1 + \int \omega + \int \omega \omega + \int \omega \omega \omega + \cdots$$

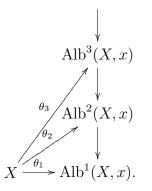
This is a $\widehat{U}\mathfrak{g}$ -valued iterated integral. The integrability condition implies that T is a homotopy functional on PX. For all $\gamma \in PX$, $T(\gamma) \in \exp \mathfrak{g} = G$.

The Albanese mapping $\theta: X \to Alb(X, x)$ is given by

$$\theta(y) = T(\gamma) \in \Gamma \backslash G / F^0.$$

It is clearly well defined as T is a homotopy functional and we have taken the quotient by Γ . On the space of paths that begin at x we have $dT = T\omega$. This and the fact that $\omega \in \mathbb{F}^0(E^1(X)\widehat{\otimes}\mathfrak{g}), \theta$ imply that θ is holomorphic. One can show that θ is independent of the choice of ω .

Truncating this construction by L_r gives the tower:



6. Algebraic Approach

The constructions above use smooth forms. There is also a version of Chen's π_1 -de Rham Theorem that uses only iterated integrals of algebraic 1-forms. This is sketched in *Iterated Integrals and Algebraic Cycles: Examples and Prospects*, Nankai Tracts in Mathematics, vol. 5, World Scientific, 2002. The Hodge filtration should correspond to a "pole filtration," but this has yet to be worked out.

A different version of the algebraic de Rham theorem given in the same paper allows one to prove that if X is defined over F and $F \subseteq \mathbb{C}$, and $x \in X(F)$, then the Hopf algebra $H^0(\operatorname{Ch} P_{x,x}X)$ has a natural F-structure, and the Hodge filtration is defined over F.