Explicit generating sets of Jacobians of curves over finite fields

Banff

February 10, 2007

Hannes Grund
Florian Hess
Technical University Berlin

Florian Hess	1	Banff	February 10th, 2007

Introduction

Let C be a complete geometrically irreducible curve over \mathbb{F}_{q} of genus g and J its Jacobian.

Assume there is $Q \in C\left(\mathbb{F}_{q}\right)$ and let $C \rightarrow J$ with respect to Q.

We are interested in explicitly describeable subsets of $C\left(\mathbb{F}_{q}\right)$ whose images generate $J\left(\mathbb{F}_{q}\right)$, in the asymptotics $q \rightarrow \infty$ and g constant.

Uses a combination of well-known techniques, generalises work of Kohel and Shparlinski.

Observations

Have \#C($\left.\mathbb{F}_{q}\right) \sim q$ and $\# J\left(\mathbb{F}_{q}\right) \sim q^{g}$.
Upper bound for cardinality of minimal generating sets:

- $O\left(\log \left(q^{g}\right)\right)$, for general groups.
- $O(g)$, observing group structure of $J\left(\mathbb{F}_{q}\right)$.

Theorem (Erdös, Renyi).
Let G be an abelian group and $n=\# G$. Choose k elements a_{1}, \ldots, a_{k} from G uniformly and independently at random.
If $k \geq \log _{2}(n)+2 \log (\log (n))$, then $G=\left\{\sum_{i=1}^{k} \lambda_{i} a_{i} \mid \lambda_{i} \in\{0,1\}\right\}$ with probability tending to 1 for $n \rightarrow \infty$.

Cannot apply this to $C\left(\mathbb{F}_{q}\right)$, unless $C\left(\mathbb{F}_{q}\right)$ "sufficiently random" in $J\left(\mathbb{F}_{q}\right)$.

| Florian Hess | 3 | Banff | February 10th, 2007 |
| :--- | :--- | :--- | :--- | :--- |

Explicit generating sets

Let B be a subgroup of \mathbb{F}_{q}^{+}and $\alpha \in \mathbb{F}_{q}$. Let $I=\cup_{i=r}^{s}(B+\alpha i)$ for $r, s \geq 0$.
Let $f \in \mathbb{F}_{q}(C)^{\times}$be a function with at least one pole order not divisible by p, where $p^{n}=q$. Such f exists with $\operatorname{deg}(f)=O(g)$.

Let $S=\operatorname{supp}\left((f)_{\infty}\right)$ and $T=\left\{P \in C\left(\mathbb{F}_{q}\right) \backslash S \mid f(P) \in I\right\}$.
Theorem 1.
If $\# I=\theta^{\sim}\left(q^{1 / 2}\right)$ for $q \rightarrow \infty$ and $g=O(1)$ then:

- $\# T=O^{\sim}\left(q^{1 / 2}\right)$,
- T generates $J\left(\mathbb{F}_{q}\right)$,
- T contains a generator for every cyclic factor group of $J\left(\mathbb{F}_{q}\right)$.

Discussion

Possible motivation:

- Obtain deterministic algorithms.
- Useful for some statements about pseudo-random number generators.

Case $q=O(1)$ and $g \rightarrow \infty$:

- Then use closed points up to degree $O\left(\log _{q}(g)\right)$, yields generating set of size polynomial in $\log (q)$ and g.

Comparison with finite fields:

- Can find generating sets of size $O\left(q^{1 / 4}\right)$.
- Can find polynomial size generating sets if $p=O(1)$.

$$
\begin{array}{llll}
\hline \text { Florian Hess } & 5 & \text { Banff } & \text { February 10th, 2007 }
\end{array}
$$

Incomplete character sums

With the notation from before, Theorem 1 is a corollary of the following theorem.

Theorem 2.
Let $\chi \in J\left(\mathbb{F}_{q}\right)^{\vee}$. Then

$$
\sum_{P \in T} \chi(P)= \begin{cases}\# I+O\left(g q^{1 / 2} \log (p)\right) & \text { for } \chi=1 \\ O\left(g q^{1 / 2} \log (p)\right) & \text { otherwise }\end{cases}
$$

Proof of Thm 1

Because of Thm 2, the set I can be chosen within the bounds such that the character sums are different for $\chi=1$ and all $\chi \neq 1$. Hence we have that $\chi(P)=1$ for all $P \in T$ implies $\chi=1$, and T generates $J\left(\mathbb{F}_{q}\right)$.
Let $U \subseteq J\left(\mathbb{F}_{q}\right)$ such that $J\left(\mathbb{F}_{q}\right) / U$ is cyclic, and let $n=\# J\left(\mathbb{F}_{q}\right) / U$. For $d \mid n$ let $\chi \in J\left(\mathbb{F}_{q}\right)^{\vee}$ with $\operatorname{ker}(\chi) \supseteq U$ of order d. Let $T_{d}=T \cap \operatorname{ker}(\chi)$, the elements of order n / d in T. Then

$$
\begin{aligned}
\# T_{d} & =\sum_{P \in T_{d}} 1=\frac{1}{d} \sum_{P \in T} \sum_{i=0}^{d-1} \chi^{i}(P)=\frac{1}{d} \sum_{P \in T} 1+\frac{1}{d} \sum_{i=1}^{d-1} \sum_{P \in T} \chi^{i}(P) \\
& =\frac{1}{d} \# T+O\left(g q^{1 / 2} \log (p)\right)
\end{aligned}
$$

Iwaniec's shifted sieve implies that the number of generators of $J\left(\mathbb{F}_{q}\right) / U$ in T is greater than or equal to

$$
c_{1} \# T /(\log (\log (n))+1)^{2}-c_{2} \log (n)^{2} g q^{1 / 2} \log (p)
$$

Florian Hess

Proof of Thm 2 - Character sums

Let $X \rightarrow C$ be an abelian covering of $C, G(X / C)$ its Galois group and $(\cdot, X / C)$ its Artin symbol. Let $\chi \in G(X / C)^{\vee}$ be a character and $\mathfrak{f}(\chi)$ the conductor.

Then by Hasse-Weil

$$
\begin{aligned}
& \sum_{P \in C \backslash f(\chi), \operatorname{deg}(P) \mid d} \operatorname{deg}(P) \cdot \chi((P, X / C))^{d / \operatorname{deg}(P)} \\
&= \begin{cases}q^{d}+O\left(g q^{d / 2}\right) & \text { for } \chi=1, \\
O\left((g+\operatorname{deg} f(\chi)) q^{d / 2}\right) & \text { otherwise. } .\end{cases}
\end{aligned}
$$

These are "complete" character sums.

Setup

Assume that X represents a Hilbert class field of C.
Instead of $\chi \in J\left(\mathbb{F}_{q}\right)^{\vee}$ and $\sum_{P \in T} \chi(P)$ we consider $\chi \in G(X / C)^{\vee}$ and $\sum_{P \in T} \chi((P, X / C))$.

Let $Y \rightarrow C$ be an abelian covering linearly disjoint from $X \rightarrow C$ and ramified in $S \subseteq C$.

Choose a set $I \subseteq G(Y / C)$ and define $T=\left\{P \in C\left(\mathbb{F}_{q}\right) \backslash S \mid(P, Y / C) \in I\right\}$ (will be brought in accordance with I and T from Theorem 1 later).

$$
h_{I}(\sigma):=\frac{1}{\# G(Y / C)} \sum_{\psi \in G(Y / C)^{\vee}} \sum_{\tau \in I} \psi\left(\sigma \tau^{-1}\right)= \begin{cases}1 & \text { for } \sigma \in I \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\begin{array}{llll}
\hline \text { Florian Hess } & 9 & \text { Banff } & \text { February 10th, } 2007 \\
\hline
\end{array}
$$

Expression

$$
\begin{aligned}
\sum_{P \in T} \chi(P)= & \sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash S} \chi(P) h_{I}(P) \\
= & \frac{1}{\# G(Y / C)} \sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash S} \sum_{\psi \in G(Y / C)^{\vee}} \sum_{\tau \in I} \chi(P) \psi(P) \psi\left(\tau^{-1}\right) \\
= & \frac{\# I}{\# G(Y / C)} \sum_{P \in C\left(\mathbb{F}_{q}\right)} \chi(P)-\frac{\# I}{\# G(Y / C)} \sum_{P \in S} \chi(P)+ \\
& \frac{1}{\# G(Y / C)} \sum_{\psi \in G(Y / C)^{\vee} \backslash\{1\}}\left(\sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash S} \chi(P) \psi(P)\right)\left(\sum_{\tau \in I} \psi\left(\tau^{-1}\right)\right)
\end{aligned}
$$

[^0]
Expression

Because of the assumptions, $P \mapsto \chi(P) \psi(P)$ is equal to $P \mapsto(\chi \times \psi)(P)$, where $\chi \times \psi \in G\left(X \times_{C} Y / Y\right)^{\vee} \backslash\{1\}$.

Also, $\mathfrak{f}(\chi \times \psi)=\mathfrak{f}(\psi)$ and $\operatorname{supp}(\mathfrak{f}(\psi)) \subseteq S$.

So

$$
\begin{aligned}
\sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash S} \chi(P) \psi(P) & =\sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash f(\psi)} \chi(P) \psi(P)-\sum_{P \in S \backslash f(\psi)} \chi(P) \psi(P) \\
& =\sum_{P \in C\left(\mathbb{F}_{q}\right) \backslash f(\chi \times \psi)}(\chi \times \psi)(P)-\sum_{P \in S \backslash f(\psi)} \chi(P) \psi(P) \\
& \left.=O\left((g+\operatorname{deg} f(\psi)) q^{1 / 2}+\# S\right)\right) .
\end{aligned}
$$

Florian Hess

$$
11 \text { Bar }
$$

$$
\text { Banff } \quad \text { February 10th, } 2007
$$

Estimation

Using $b=\frac{1}{\# G(Y / C)} \sum_{\psi \in G(Y / C)^{\vee} \backslash\{1\}}\left|\sum_{\tau \in I} \psi\left(\tau^{-1}\right)\right|:$
$\sum_{P \in T} \chi(P)= \begin{cases}\frac{\# I}{\# G(Y / C)} q+O\left(\# S(1+b)+\left(g+\max _{\psi} \operatorname{deg} f(\psi)\right) q^{1 / 2} b\right) & \text { for } \chi=1, \\ O\left(\# S(1+b)+\left(g+\max _{\psi} \operatorname{deg} f(\psi)\right) q^{1 / 2} b\right) & \text { otherwise } .\end{cases}$

Hence can (hope to) get generating set T with $\# T=O\left(\# S(1+b)+\left(g+\max _{\psi} \operatorname{deg} f(\psi)\right) q^{1 / 2} b\right)$.

Find suitable Y, I such that $\# S=O(g), \max _{\psi} \operatorname{deg}(f(\psi))=O(g)$,
$b=O(\log (p))$ and make things explicit.

Apparently have $b \geq 1 / 2$ for $I \neq \emptyset$ and $I \neq G(Y / C)$, so cannot be better than $\# T=O\left(g q^{1 / 2}\right)$.

Slide from before with Thm 2

Let B be a subgroup of \mathbb{F}_{q}^{+}and $\alpha \in \mathbb{F}_{q}$. Let $I=\cup_{i=s}^{s+r}(B+\alpha i)$ for $r, s \geq 0$.
Let $f \in \mathbb{F}_{q}(C)^{\times}$be a function with at least one pole order not divisible by p, where $p^{n}=q$. Such f exists with $\operatorname{deg}(f)=O(g)$.

Let $S=\operatorname{supp}\left((f)_{\infty}\right)$ and $T=\left\{P \in C\left(\mathbb{F}_{q}\right) \backslash S \mid f(P) \in I\right\}$.
Theorem 2.
Let $\chi \in J\left(\mathbb{F}_{q}\right)^{\vee}$. Then

$$
\sum_{P \in T} \chi(P)= \begin{cases}\# I+O\left(g q^{1 / 2} \log (p)\right) & \text { for } \chi=1 \\ O\left(g q^{1 / 2} \log (p)\right) & \text { otherwise }\end{cases}
$$

$$
\begin{array}{lcll}
\hline \text { Florian Hess } & 13 & \text { Bantf } & \text { February 10th, } 2007 \\
\hline
\end{array}
$$

Use Artin-Schreier covering

Make things explicit, use $Y \rightarrow C$ defined by $\mathbb{F}_{q}(Y)=\mathbb{F}_{q}(C)\left(\wp^{-1}(D)\right)$ where $\wp(y)=y^{p}-y$ and $D=\left\{\alpha f \mid \alpha \in \mathbb{F}_{q}\right\}$.

Then

- $Y \rightarrow C$ is ramified only at $S=\operatorname{supp}\left((f)_{\infty}\right)$, linear disjoint from $X \rightarrow C$.
- $\# S=O(g)$,
- $f(\psi) \leq \sum_{P \in S}\left(1-v_{P}(f)\right) P$, hence $\operatorname{deg}(f(\psi))=O(g)$
- There is an isomorphism $u: \mathbb{F}_{q}^{+} \rightarrow G(Y / C)$ such that
$(P, Y / C)=u(f(P))$ for all $P \in C\left(\mathbb{F}_{q}\right) \backslash S$.
So can assume $I \subseteq \mathbb{F}_{q}^{+}$and replace " $(P, Y / C) \in I$ " by " $f(P) \in I$ ".
Theorem 2 now follows since $b=\frac{1}{q} \sum_{\psi \in\left(\mathbb{F}_{q}^{+}\right) \backslash \backslash\{1\}}\left|\sum_{\tau \in I} \psi\left(\tau^{-1}\right)\right| \leq 1+\log (p)$ for the given choice of I.

[^0]: (Automatically applying Artin symbols as required.)

