Explicit generating sets of Jacobians of curves over finite fields

Banff

February 10, 2007

Hannes Grund Florian Hess

Technical University Berlin

Florian Hess

Banff February 10th, 2007

Introduction

Let *C* be a complete geometrically irreducible curve over \mathbb{F}_q of genus *g* and *J* its Jacobian.

1

Assume there is $Q \in C(\mathbb{F}_q)$ and let $C \to J$ with respect to Q.

We are interested in explicitly describeable subsets of $C(\mathbb{F}_q)$ whose images generate $J(\mathbb{F}_q)$, in the asymptotics $q \to \infty$ and g constant.

Uses a combination of well-known techniques, generalises work of Kohel and Shparlinski.

2

Observations

Have $#C(\mathbb{F}_q) \sim q$ and $#J(\mathbb{F}_q) \sim q^g$.

Upper bound for cardinality of minimal generating sets:

- $O(\log(q^g))$, for general groups.
- O(g), observing group structure of $J(\mathbb{F}_q)$.

Theorem (Erdös, Renyi).

Let *G* be an abelian group and n = #G. Choose *k* elements a_1, \ldots, a_k from *G* uniformly and independently at random. If $k \ge \log_2(n) + 2\log(\log(n))$, then $G = \{\sum_{i=1}^k \lambda_i a_i | \lambda_i \in \{0, 1\}\}$ with probability tending to 1 for $n \to \infty$.

Cannot apply this to $C(\mathbb{F}_q)$, unless $C(\mathbb{F}_q)$ "sufficiently random" in $J(\mathbb{F}_q)$.

3

Florian Hess

Banff February 10th, 2007

Explicit generating sets

Let *B* be a subgroup of \mathbb{F}_q^+ and $\alpha \in \mathbb{F}_q$. Let $I = \bigcup_{i=r}^s (B + \alpha i)$ for $r, s \ge 0$.

Let $f \in \mathbb{F}_q(C)^{\times}$ be a function with at least one pole order not divisible by p, where $p^n = q$. Such f exists with $\deg(f) = O(g)$.

Let $S = \operatorname{supp}((f)_{\infty})$ and $T = \{P \in C(\mathbb{F}_q) \setminus S \mid f(P) \in I\}.$

Theorem 1.

If $\#I = \theta^{\sim}(q^{1/2})$ for $q \to \infty$ and g = O(1) then:

- $\#T = O^{\sim}(q^{1/2}),$
- *T* generates $J(\mathbb{F}_q)$,
- *T* contains a generator for every cyclic factor group of $J(\mathbb{F}_q)$.

4

Discussion

Possible motivation:

- Obtain deterministic algorithms.
- Useful for some statements about pseudo-random number generators.

Case q = O(1) and $g \rightarrow \infty$:

• Then use closed points up to degree $O(\log_q(g))$, yields generating set of size polynomial in $\log(q)$ and g.

5

Comparison with finite fields:

- Can find generating sets of size $O(q^{1/4})$.
- Can find polynomial size generating sets if p = O(1).

Florian Hess

Banff February 10th, 2007

Incomplete character sums

With the notation from before, Theorem 1 is a corollary of the following theorem.

Theorem 2.

Let $\chi \in J(\mathbb{F}_q)^{\vee}$. Then $\sum_{P \in T} \chi(P) = \begin{cases} \#I + O(gq^{1/2}\log(p)) & \text{for } \chi = 1, \\ O(gq^{1/2}\log(p)) & \text{otherwise.} \end{cases}$

6

Proof of Thm 1

Because of Thm 2, the set *I* can be chosen within the bounds such that the character sums are different for $\chi = 1$ and all $\chi \neq 1$. Hence we have that $\chi(P) = 1$ for all $P \in T$ implies $\chi = 1$, and *T* generates $J(\mathbb{F}_q)$.

Let $U \subseteq J(\mathbb{F}_q)$ such that $J(\mathbb{F}_q)/U$ is cyclic, and let $n = \#J(\mathbb{F}_q)/U$. For $d \mid n$ let $\chi \in J(\mathbb{F}_q)^{\vee}$ with $\ker(\chi) \supseteq U$ of order d. Let $T_d = T \cap \ker(\chi)$, the elements of order n/d in T. Then

$$\begin{aligned} &\#T_d = \sum_{P \in T_d} 1 = \frac{1}{d} \sum_{P \in T} \sum_{i=0}^{d-1} \chi^i(P) = \frac{1}{d} \sum_{P \in T} 1 + \frac{1}{d} \sum_{i=1}^{d-1} \sum_{P \in T} \chi^i(P) \\ &= \frac{1}{d} \#T + O(gq^{1/2}\log(p)). \end{aligned}$$

Iwaniec's shifted sieve implies that the number of generators of $J(\mathbb{F}_q)/U$ in *T* is greater than or equal to

 $c_1 \# T / (\log(\log(n)) + 1)^2 - c_2 \log(n)^2 g q^{1/2} \log(p).$

7

Florian Hess

Banff February 10th, 2007

Proof of Thm 2 - Character sums

Let $X \to C$ be an abelian covering of C, G(X/C) its Galois group and $(\cdot, X/C)$ its Artin symbol. Let $\chi \in G(X/C)^{\vee}$ be a character and $\mathfrak{f}(\chi)$ the conductor.

Then by Hasse-Weil

ŀ

$$\sum_{P \in C \setminus \mathfrak{f}(\chi), \deg(P)|d} \deg(P) \cdot \chi((P, X/C))^{d/\deg(P)} \\ = \begin{cases} q^d + O(gq^{d/2}) & \text{for } \chi = 1, \\ O((g + \deg \mathfrak{f}(\chi))q^{d/2}) & \text{otherwise.} \end{cases}$$

8

These are "complete" character sums.

Setup

Assume that *X* represents a Hilbert class field of *C*.

Instead of $\chi \in J(\mathbb{F}_q)^{\vee}$ and $\sum_{P \in T} \chi(P)$ we consider $\chi \in G(X/C)^{\vee}$ and $\sum_{P \in T} \chi((P, X/C))$.

Let $Y \to C$ be an abelian covering linearly disjoint from $X \to C$ and ramified in $S \subseteq C$.

Choose a set $I \subseteq G(Y/C)$ and define $T = \{P \in C(\mathbb{F}_q) \setminus S | (P, Y/C) \in I\}$ (will be brought in accordance with *I* and *T* from Theorem 1 later).

$$h_{I}(\sigma) := \frac{1}{\#G(Y/C)} \sum_{\psi \in G(Y/C)^{\vee}} \sum_{\tau \in I} \psi(\sigma \tau^{-1}) = \begin{cases} 1 & \text{ for } \sigma \in I, \\ 0 & \text{ otherwise.} \end{cases}$$

9

Florian Hess

Banff February 10th, 2007

Expression

$$\begin{split} \sum_{P \in T} \chi(P) &= \sum_{P \in C(\mathbb{F}_q) \setminus S} \chi(P) h_I(P) \\ &= \frac{1}{\# G(Y/C)} \sum_{P \in C(\mathbb{F}_q) \setminus S} \sum_{\psi \in G(Y/C)^{\vee}} \sum_{\tau \in I} \chi(P) \psi(P) \psi(\tau^{-1}) \\ &= \frac{\# I}{\# G(Y/C)} \sum_{P \in C(\mathbb{F}_q)} \chi(P) - \frac{\# I}{\# G(Y/C)} \sum_{P \in S} \chi(P) + \\ &= \frac{1}{\# G(Y/C)} \sum_{\psi \in G(Y/C)^{\vee} \setminus \{1\}} \left(\sum_{P \in C(\mathbb{F}_q) \setminus S} \chi(P) \psi(P) \right) \left(\sum_{\tau \in I} \psi(\tau^{-1}) \right) \end{split}$$

10

(Automatically applying Artin symbols as required.)

Expression

Because of the assumptions, $P \mapsto \chi(P)\psi(P)$ is equal to $P \mapsto (\chi \times \psi)(P)$, where $\chi \times \psi \in G(X \times_C Y/Y)^{\vee} \setminus \{1\}$.

Also, $f(\chi \times \psi) = f(\psi)$ and $supp(f(\psi)) \subseteq S$.

So

$$\sum_{P \in C(\mathbb{F}_q) \setminus S} \chi(P) \psi(P) = \sum_{P \in C(\mathbb{F}_q) \setminus \mathfrak{f}(\psi)} \chi(P) \psi(P) - \sum_{P \in S \setminus \mathfrak{f}(\psi)} \chi(P) \psi(P)$$
$$= \sum_{P \in C(\mathbb{F}_q) \setminus \mathfrak{f}(\chi \times \psi)} (\chi \times \psi)(P) - \sum_{P \in S \setminus \mathfrak{f}(\psi)} \chi(P) \psi(P)$$
$$= O((g + \deg \mathfrak{f}(\psi))q^{1/2} + \#S)).$$

Florian Hess

Banff February 10th, 2007

Estimation

Using
$$b = \frac{1}{\#G(Y/C)} \sum_{\psi \in G(Y/C)^{\vee} \setminus \{1\}} \left| \sum_{\tau \in I} \psi(\tau^{-1}) \right|$$
:

$$\sum_{P \in T} \chi(P) = \begin{cases} \frac{\#I}{\#G(Y/C)}q + O\left(\#S(1+b) + (g + \max_{\Psi} \deg \mathfrak{f}(\Psi))q^{1/2}b\right) & \text{for } \chi = 1, \\ O\left(\#S(1+b) + (g + \max_{\Psi} \deg \mathfrak{f}(\Psi))q^{1/2}b\right) & \text{otherwise.} \end{cases}$$

11

Hence can (hope to) get generating set *T* with $#T = O(#S(1+b) + (g + \max_{\Psi} \deg f(\Psi))q^{1/2}b).$

Find suitable *Y*,*I* such that #S = O(g), $\max_{\psi} \deg(\mathfrak{f}(\psi)) = O(g)$, $b = O(\log(p))$ and make things explicit.

Apparently have $b \ge 1/2$ for $I \ne \emptyset$ and $I \ne G(Y/C)$, so cannot be better than $\#T = O(gq^{1/2})$.

Florian Hess

Florian Hess

12

Slide from before with Thm 2

Let *B* be a subgroup of \mathbb{F}_q^+ and $\alpha \in \mathbb{F}_q$. Let $I = \bigcup_{i=s}^{s+r} (B + \alpha i)$ for $r, s \ge 0$.

Let $f \in \mathbb{F}_q(C)^{\times}$ be a function with at least one pole order not divisible by p, where $p^n = q$. Such f exists with $\deg(f) = O(g)$.

Let $S = \operatorname{supp}((f)_{\infty})$ and $T = \{P \in C(\mathbb{F}_q) \setminus S \mid f(P) \in I\}.$

Theorem 2.

Let $\chi \in J(\mathbb{F}_q)^{\vee}$. Then

 $\sum_{P \in T} \chi(P) = \begin{cases} \#I + O(gq^{1/2}\log(p)) & \text{ for } \chi = 1, \\ O(gq^{1/2}\log(p)) & \text{ otherwise.} \end{cases}$

13

Florian Hess

Banff February 10th, 2007

Use Artin-Schreier covering

Make things explicit, use $Y \to C$ defined by $\mathbb{F}_q(Y) = \mathbb{F}_q(C)(\mathscr{G}^{-1}(D))$ where $\mathscr{G}(y) = y^p - y$ and $D = \{ \alpha f \mid \alpha \in \mathbb{F}_q \}.$

Then

- $Y \to C$ is ramified only at $S = \text{supp}((f)_{\infty})$, linear disjoint from $X \to C$.
- #S = O(g),
- $f(\psi) \leq \sum_{P \in S} (1 v_P(f))P$, hence $\deg(f(\psi)) = O(g)$.
- There is an isomorphism $u : \mathbb{F}_q^+ \to G(Y/C)$ such that (P, Y/C) = u(f(P)) for all $P \in C(\mathbb{F}_q) \setminus S$.

So can assume $I \subseteq \mathbb{F}_q^+$ and replace " $(P, Y/C) \in I$ " by " $f(P) \in I$ ".

Theorem 2 now follows since $b = \frac{1}{q} \sum_{\Psi \in (\mathbb{F}_q^+)^{\vee} \setminus \{1\}} \left| \sum_{\tau \in I} \Psi(\tau^{-1}) \right| \le 1 + \log(p)$ for the given choice of *I*. \Box

14

Florian Hess