p-ADIC HODGE THEORY

KIRAN KEDLAYA

Let C be a "smooth curve over $R=\mathbb{Z}[1 / N]$ ", by which we mean a smooth projective curve over R minus a divisor that is finite étale over R. Let p be a prime not dividing N. Let J be "the Jacobian over C over R ", which will be an extension of the Jacobian of the complete curve extended by a torus. Let O be a fixed element of $C(R)$. Chabauty's method is based on the following diagram:

Goal 1: Explain some p-adic Hodge theory. This is preparation for:
Goal 2: Redraw this diagram in a more Galois-cohomological way to allow for a nonabelian version.

1. p-Adic Hodge theory

Let X be a smooth proper scheme over \mathbb{Z}_{p} (or more generally, a smooth proper scheme over \mathbb{Z}_{p} minus a relative normal crossings divisor). A normal crossings divisor is a divisor that étale locally looks like a union of transverse hyperplanes in affine space. A relative normal crossings divisor is the same, except over $\operatorname{Spec} \mathbb{Z}_{p}$.

The \mathbb{Q}_{p}-vector space $H_{\text {et }}^{i}\left(X_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)$ has an action of $G_{p}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$. The \mathbb{Q}_{p}-vector space $H_{\mathrm{dR}}^{i}\left(X_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ has a Hodge filtration, and is isomorphic to $H_{\text {crys }}^{i}\left(X_{\mathbb{F}_{p}}, \mathbb{Z}_{p}\right) \otimes \mathbb{Q}_{p}$, which has a Frobenius action.

Fontaine asks: What do H_{et}^{i} and H_{dR}^{i} have to do with each other?
Let $\mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}$. Fontaine defines a "big ring" $B_{\text {crys }}$, a topological \mathbb{Q}_{p}-algebra with a continuous G_{p}-action, a decreasing filtration (commuting with the G_{p}-action), and an extra endomorphism ϕ (Frobenius).

Theorem 1.1 (Faltings, Tsuji). There is an isomorphism of \mathbb{Q}_{p}-vector spaces

$$
\left(H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{\mathrm{crys}}\right)^{G_{p}} \simeq H_{\mathrm{dR}}^{i}\left(X_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)
$$

respecting the filtration and Frobenius action. To go the other way: there is an isomorphism

$$
\left(\operatorname{Fil}^{0}\left(H_{\mathrm{dR}}^{i}\left(X_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{\text {crys }}\right)\right)^{\phi=1} \simeq H_{\mathrm{et}}^{i}\left(X_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)
$$

respecting the Galois action.

Date: February 5, 2007.

Let $T=T_{p}(J)=\lim _{n} J\left[p^{n}\right](\overline{\mathbb{Q}})$ be the p-adic Tate module. Let $V=T \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} \simeq$ $H_{1}^{\text {et }}\left(C_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)$. Let G_{R} be the Galois group over \mathbb{Q} of the maximal extension unramified outside $N p$; then G_{R} acts on V. For $\ell \neq p$, let $H_{f}^{1}\left(G_{\ell}, V\right)=\operatorname{ker}\left(H^{1}\left(G_{\ell}, V\right) \rightarrow H^{1}\left(I_{\ell}, V\right)\right)$. Define $H_{f}^{1}\left(G_{p}, V\right)=\operatorname{ker}\left(H^{1}\left(G_{p}, V\right) \rightarrow H^{1}\left(G_{p}, V \otimes B_{\text {crys }}\right)\right)$. Let $H_{f}^{1}\left(G_{R}, V\right)$ be the set of elements of $H^{1}\left(G_{R}, V\right)$ that map to $H_{f}^{1}\left(G_{\ell}, V\right)$ for each prime ℓ.

The comparison theorem relates $H_{\mathrm{dR}}^{1}\left(C_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ and $H_{\mathrm{et}}^{1}\left(\bar{C}_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)=V^{*}(1)$. In

$$
0 \rightarrow H^{0}\left(C_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow H_{\mathrm{dR}}^{1}\left(C_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right) \rightarrow H^{1}\left(C_{\mathbb{Q}_{p}}, \mathcal{O}\right) \rightarrow 0
$$

the space on the left is Fil ${ }^{1}$ in the Hodge filtration.
In the diagram above, the first upward map is an isomorphism if \amalg is finite. The second upward map is an isomorphism. That the third upward map is an isomorphism follows from the comparison theorem.

The map

$$
J(R) \otimes \mathbb{Q}_{p} \rightarrow H_{f}^{1}\left(G_{R}, V\right)
$$

is a Kummer map. Taking Galois cohomology of

$$
0 \rightarrow J(\overline{\mathbb{Q}})\left[p^{n}\right] \rightarrow J(\overline{\mathbb{Q}}) \xrightarrow{p^{n}} J(\overline{\mathbb{Q}}) \rightarrow 0
$$

yields

$$
\varliminf_{n} \frac{J(R)}{\lim ^{n} J(R)} \longrightarrow H^{1}\left(G_{R}, V\right)
$$

The arrow

$$
H_{f}^{1}\left(G_{p}, V\right) \leftarrow H^{0}\left(G_{p}, B_{\text {crys }} \otimes V\right) / \mathrm{Fil}^{0}
$$

comes from the exact sequence

$$
0 \rightarrow \mathbb{Q}_{p} \rightarrow B_{\text {crys }}^{\phi=1} \rightarrow \frac{B_{\text {crys }}}{B_{\text {crys }}^{+}} \rightarrow 0
$$

(where $\mathrm{Fil}^{0} B_{\text {crys }}=B_{\text {crys }}^{+}$) by tensoring with V and taking invariants.
Let $U_{n}^{\text {et }}=\pi_{1}^{\text {unip }}(C, O)_{/ \mathbb{Q}_{p}} / L^{n+1}$.

Then we have a diagram

Remark 1.2. The p-adic Tate module T is the maximal pro- p abelian quotient of $\pi_{1}^{\text {et }}\left(C_{\overline{\mathbb{Q}}_{p}}, O\right)$.

