NONABELIAN CHABAUTY

MINHYONG KIM

1. Multiple polylogs

Define

$$
\mathcal{L}_{\left(k_{1}, \ldots, k_{m}\right)}(z):=\sum_{0<n_{1}<\cdots<n_{m}} \frac{z^{n_{m}}}{n_{1}^{k_{1}} \cdots n_{m}^{k_{m}}}
$$

For example,

$$
\mathcal{L}_{(k)}(z)=\sum_{n>0} \frac{z^{n}}{n^{k}}
$$

Their special values are related to zeta and L-values. But we will be interested in the functions themselves.

Index them with words w on $\{A, B\}$. Define

$$
\begin{aligned}
\mathcal{L}_{\emptyset}(z) & =1 \\
\mathcal{L}_{A^{n}}(z) & =\frac{1}{n!}(\log z)^{n} \\
\mathcal{L}_{A w}(z) & =\int_{0}^{z} \frac{d t}{t} \mathcal{L}_{w}(t), \quad \text { if } w \neq A^{n} \\
\mathcal{L}_{B w}(z) & =\int_{0}^{z} \frac{d t}{1-t} \mathcal{L}_{w}(t), \quad \text { if } w \neq A^{n}
\end{aligned}
$$

These are multivalued functions on $\mathbb{P}^{1}-\{0,1, \infty\}$. For z near 0 , we have $\mathcal{L}_{\left(k_{1}, \ldots, k_{m}\right)}=\mathcal{L}_{w}$ where $w:=A^{k_{1}-1} B \cdots A^{k_{m}-1} B$.

Define

$$
G(z)=\sum_{w} \mathcal{L}_{w}(z)[w]
$$

a function with values in $\mathbb{C}\langle\langle A, B\rangle\rangle$. Then $d G=\left(A \frac{d z}{z}+B \frac{d z}{1-z}\right) G(z)$. One can define p-adic versions. The coefficients are then p-adic multiple polylogs.

2. S-Unit EQUATIONS

Let S be a finite set of primes. Consider solutions to $x+y=1$ with $x, y \in \mathbb{Z}[1 / S]^{\times}$.
If $S=\{\infty, \ell, q\}$ and $p \notin S$, There exists a polynomial $P\left(\mathcal{L}_{w}\right)$ in the \mathcal{L}_{w} with $|w| \leq 4$ and having \mathbb{Q}_{p}-coefficients such that $P\left(\mathcal{L}_{w}\right)(x)=0$ for every solution $(x, y)=0$.

For larger S, we need $|w| \leq N$, where N is explicitly computable.

Date: February 6-7, 2007.

3. Integral points on an elliptic curve

Let \mathcal{E} be the affine curve $y^{2}=x^{3}+2$ over \mathbb{Z}. Let $\alpha=\frac{d x}{y}$ and $\beta=\frac{x d x}{y}$. Let $p=5$. The fundamental group of $\mathcal{E}(\mathbb{C})$ is a free group on two generators. Let $a=(-1,1)$. Define Coleman functions

$$
\begin{aligned}
\mathcal{L}_{A}(z) & =\int_{a}^{z} \frac{d x}{y} \\
\mathcal{L}_{B}(z) & =\int_{a}^{z} \frac{x d x}{y} \\
\mathcal{L}_{A B}(z) & =\int_{a}^{z} \frac{d x}{y} \mathcal{L}_{B}
\end{aligned}
$$

on $\mathcal{E}\left(\mathbb{Z}_{p}\right)$. Then there exists a polynomial $P\left(\mathcal{L}_{A}, \mathcal{L}_{B}, \mathcal{L}_{A B}\right)$ such that $P(\mathcal{L})(x, y)=0$ for $(x, y) \in \mathcal{E}(\mathbb{Z})$.

4. General curves

Let $\mathbb{R}=\mathbb{Z}[1 / S]$. Let $\mathcal{X} \rightarrow \operatorname{Spec} R$ be a smooth proper curve of genus g minus a finite étale divisor whose fibers are of degree t. So t is "the number of points at infinity". Define

$$
m= \begin{cases}2 g & \text { if } t=0 \\ 2 g+t-1 & \text { if } t>0\end{cases}
$$

Pick $p \notin S$. One can define $\mathcal{L}_{w}(z)$ where w runs over words on $\left\{A_{1}, \ldots, A_{m}\right\}$ on $\mathcal{X}\left(\mathbb{Z}_{p}\right)$. The A_{i} correspond to generators α_{i} of $H_{\mathrm{dR}}^{1}(\mathcal{X})$.

Assume "motivic conjectures" (e.g., Bloch-Kato on surjectivity on p-adic Chern class maps or Fontaine-Mazur conjecture on representations of geometric origin). Then we can compute $N=N(\mathcal{X}, S, p)$ such that there exists a polynomial $P\left(\mathcal{L}_{w}\right)$ in the \mathcal{L}_{w} for $|w| \leq N$ such that $P\left(\mathcal{L}_{w}\right)(x)=0$ for all $x \in \mathcal{X}(R)$. This would imply the theorems of Faltings and Siegel for curves over \mathbb{Q}.

5. Origin of polylogs

They come from algebraic functions on classifying spaces associated to unipotent π_{1} 's. Let X be a variety over a number field. Fix $b, x \in X$. Let $U^{M}=\pi_{1}^{M}(\bar{X}, b)$ and $P^{M}(x)=$ $\pi_{1}^{M}(\bar{X} ; b, x)$.

For a topological space X and points b, x, the space $\pi_{1}(X ; b, x)$ is a torsor for $\pi_{1}(X ; b)$. We have a map from X to a classifying space of torsors sending x to $\pi_{1}(X ; b, x)$. Analogous statements hold for the other manifestations of π_{1}.

As in Kiran's talk we have

where the space at lower left is nonabelian cohomology. The left map sends x to $\pi_{1}^{\mathrm{et}, \mathrm{un}}(\bar{X} ; b, x)$.

The objects in the bottom row map to corresponding quotients for each n (we add a subscript n to each object), and these quotients are algebraic varieties. The vertical (and diagonal) maps are transcendental. The diagonal map has Zariski-dense image.

Inside $\mathcal{C}_{n}^{\mathrm{dR}}$ the intersection of the images of $\mathcal{C}_{\text {glob }}^{\text {et }}$ and $\mathcal{X}\left(R_{p}\right)$ should be finite. This is true for $\mathbb{P}^{1}-\{0,1, \infty\}$ and for elliptic curves of rank 1 , and in general assuming motivic conjectures.

There exists a nonzero algebraic function α on $\mathcal{C}_{n}^{\mathrm{dR}}$ such that α restricted to the image of $\mathcal{C}_{\text {glob }}^{\text {et }}$ is 0 . But $\mathcal{X}\left(R_{p}\right)$ has Zariski-dense image in $\mathcal{C}_{n}^{\mathrm{dR}}$, so α pulls back to a nonzero function on $\mathcal{X}\left(R_{p}\right)$, and hence has finitely many zeros. Thus we get a bound on $\mathcal{X}(R)$.

6. Profinite case

Let $b \in Z$ be a variety. Let $\operatorname{Cov}(Z)$ be the set of finite étale covers Y of Z. Let F_{b} be the functor sending $Y \rightarrow Z$ to the fiber Y_{b} considered as a finite set. Define $\hat{\pi}_{1}(Z, b):=\operatorname{Aut}\left(F_{b}\right)$. Define $\hat{\pi}_{1}(Z ; b, x):=\operatorname{Isom}\left(F_{b}, F_{x}\right)$; this is a torsor for $\hat{\pi}_{1}(Z, b)$ with continuous action.

If $Z=\bar{X}$ where X is over \mathbb{Q} and $x, b \in X(\mathbb{Q})$, then $G:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $\operatorname{Cov}(\bar{X})$, so G acts on $\hat{\pi}_{1}(Z, b)$ and $\hat{\pi}_{1}(Z ; b, x)$. In particular, the latter is a G-equivariant torsor for $\hat{\pi}_{1}(Z, b)$; such G-equivariant torsors T are classified by $H^{1}\left(G, \hat{\pi}_{1}(\bar{X}, b)\right)$. Namely, given T, choose $t \in T$ and for each $g \in G$, find the $\gamma_{g} \in \hat{\pi}_{1}(\bar{X}, b)$ such that $g(t)=t \gamma_{g}$; then $g \mapsto \gamma_{g}$ is a 1-cocycle representing an element of $H^{1}\left(G, \hat{\pi}_{1}(\bar{X}, b)\right)$.

Let Z be a variety. Let \tilde{Z} be its universal covering (as a pro-variety, represented by a cofinal inverse system of Z_{i} 's).

For $x \in Z$,

$$
\tilde{Z}_{x} \simeq \tilde{\pi}_{1}(Z ; b, x)
$$

If $Y \rightarrow Z$ and $y \in Y_{b}$, then there exists $\phi_{y}: \tilde{Z} \rightarrow Y$ mapping \tilde{b} to y, and $\phi_{y}(\tilde{x}) \in Y_{x}$.
For an arbitrary manifold M,

$$
M \leftarrow \tilde{M}=\bigcup_{m \in M} \pi_{1}(M ; b, x) .
$$

Let X / \mathbb{Q} be a variety and $b \in X(\mathbb{Q})$. Then we have a map

$$
\begin{aligned}
X(\mathbb{Q}) & \rightarrow H^{1}\left(G, \hat{\pi}_{1}(\bar{X}, b)\right) \\
x & \mapsto\left[\hat{\pi}_{1}(\bar{X} ; b, x)\right] .
\end{aligned}
$$

If $X=Z$ is an elliptic curve, then $\hat{\pi}_{1}(\bar{E}, e)$ is the $\hat{\mathbb{Z}}$ Tate module $T(\bar{E})$. The map $E(\mathbb{Q}) \rightarrow H^{1}\left(G, \hat{\pi}_{1}(\bar{E}, e)\right)$ is the map from Kummer theory. (The H^{1} is defined as an inverse limit, or using continuous cocycles.) Conjecturally it is an isomorphism (this is equivalent to the finiteness of the p-primary part of $\amalg(E)$ for all $p)$.

If X / \mathbb{Q} is a curve of genus ≥ 2, then

$$
X(\mathbb{Q}) \rightarrow H^{1}\left(G, \hat{\pi}_{1}(\bar{X}, b)\right)
$$

is conjectured to be a bijection. (This is the version of Grothendieck's section conjecture in which a base point is fixed. This can be viewed as a nonabelian analogue of the conjecture that \amalg is finite.) It is injective by the Mordell-Weil theorem for the Jacobian of X.

Remark 6.1. For any variety V over \mathbb{Q} with $b \in V(\mathbb{Q})$, injectivity of $V(\mathbb{Q}) \rightarrow H^{1}\left(G, \hat{\pi}_{1}(\bar{V}, b)\right)$ should be viewed as a "nonabelian Mordell-Weil theorem".

7. Unipotent version

Let X / \mathbb{Q} be a smooth curve.
Let $U=U^{\text {et }}=U^{\text {et }}(\bar{X})$ be the pro-unipotent completion of $\hat{\pi}_{1}(\bar{X}, b)$ over \mathbb{Q}_{p}. The groups $U_{n}=L^{n+1} \backslash U$ are algebraic groups over \mathbb{Q}_{p}. Let E be the completed universal enveloping algebra of Lie $U^{\text {et }}$. Let $I \subseteq E$ be the augmentation ideal (the ideal generated by the Lie algebra). Let $E_{n}=E / I^{n+1}$. Then E is a projective system of continuous \mathbb{Q}_{p}-representation of $\hat{\pi}_{1}(\bar{X}, b)$. We get an étale pro-sheaf \mathcal{E} on \bar{X} such that $\mathcal{E}_{b} \simeq E$. Let $e \in E$ be the identity of the group. The pair (\mathcal{E}, e) is the universal \mathbb{Q}_{p} unipotent locally constant sheaf on \bar{X} : for any other pair (\mathcal{L}, ℓ) with $\ell \in \mathcal{L}_{b}$, there is a unique $\mathcal{E} \rightarrow \mathcal{L}$ mapping e to ℓ. In particular, there is a unique map $\mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{E}$ sending e to $e \otimes e \in(\mathcal{E} \otimes \mathcal{E})_{b}$.

Let $U_{n}(\bar{X})$ be the set of locally constant sheaves \mathcal{L} of \mathbb{Q}_{p}-vector spaces that are unipotent, i.e., admitting a filtration $\mathcal{L}=\mathcal{L}^{0} \supset \mathcal{L}^{1} \supset \cdots \supset \mathcal{L}^{n+1}=0$ with $\mathcal{L}^{i} / \mathcal{L}^{i+1} \simeq \mathbb{Q}_{p}^{r_{i}}$ (a trivial local system). Define

$$
P^{\mathrm{et}}(x)=\pi_{1}^{\mathrm{et}, u}(\bar{X}, b, x):=\operatorname{Isom}\left(F_{b}, F_{x}\right)
$$

where F_{x} is the functor from $U_{n}(\bar{X})$ to \mathbb{Q}_{p}-vector spaces taking \mathcal{L} to \mathcal{L}_{x}. Then $\pi_{1}^{\mathrm{et}, u}(\bar{X} ; b, x)$ is the set of grouplike elements in \mathcal{E}_{x}.

Given $b, x \in X(\mathbb{Q})$, the set $P_{n}^{\text {et }}(x)$ carries a G-action, and $\left[P_{n}^{\mathrm{et}}(x)\right] \in H^{1}\left(G, U_{n}^{\mathrm{et}}\right)$. We get $X(\mathbb{Q}) \rightarrow H^{1}\left(G, U_{n}^{\mathrm{et}}\right)$.

Given $\mathcal{X} \rightarrow R=\mathbb{Z}[1 / S]$ and $p \notin S, T:=S \cup\{p\}$, we get

$$
\left[P_{n}^{\mathrm{et}}(x)\right] \in H^{1}\left(G_{T}, U_{n}^{\mathrm{et}}\right)
$$

where $G_{T}:=\operatorname{Gal}\left(\mathbb{Q}_{T} / \mathbb{Q}\right)$ where \mathbb{Q}_{T} is the maximal extension unramified outside T.
Let $U_{n}=U / U^{n}$. We have

$$
0 \rightarrow \frac{U^{n}}{U^{n+1}} \rightarrow U_{n+1} \rightarrow U_{n} \rightarrow 0
$$

and $U^{1}=U, U^{2}=[U, U]$. So $U_{2}=U /[U, U] \simeq H^{1}\left(\bar{X}, \mathbb{Q}_{p}\right)=H^{1}\left(\bar{X}, \mathbb{Q}_{p}\right)^{\wedge}$. We have

$$
0 \rightarrow H^{1}\left(G_{T}, U^{n} / U^{n+1}\right) \rightarrow H^{1}\left(G_{T}, U_{n+1}\right) \rightarrow H^{1}\left(G_{T}, U_{n}\right) \rightarrow H^{2}\left(G_{T}, U^{n} / U^{n+1}\right)
$$

In particular,

$$
0 \rightarrow H^{1}\left(G_{T}, U^{2} / U^{3}\right) \rightarrow H^{1}\left(G_{T}, U_{3}\right) \rightarrow H^{1}\left(G_{T}, U_{2}\right) \xrightarrow{\delta} H^{2}\left(G_{T}, U^{2} / U^{3}\right)
$$

Here δ is an algebraic map between \mathbb{Q}_{p}-varieties.
Consider $X(R) \hookrightarrow X\left(R_{p}\right)$. Effectively separate the p-adic distance between points in $X(R)$. This would lead to an effective injection $X(R) \rightarrow J(R) / N J(R)$.

$$
\begin{gathered}
\overbrace{1}(R) \longrightarrow X\left(R_{p}\right) \\
H^{1}\left(G_{T}, U_{n}^{\mathrm{et}}\right) \longrightarrow H^{1}\left(G_{p}, U_{n}^{\mathrm{et}}\right) \\
0 \rightarrow H^{1}\left(G_{T}, U^{n} / U^{n+1}\right) \rightarrow H^{1}\left(G_{T}, U_{n+1}\right) \rightarrow H^{1}\left(G_{T}, U_{n}\right) \xrightarrow{\delta} H^{2}\left(G_{T}, U^{n} / U^{n+1}\right)
\end{gathered}
$$

One can define variety structures on these such that $H^{1}\left(G_{T}, U_{n+1}\right) \simeq Z_{n} \times H^{1}\left(G_{T}, U^{n} / U^{n+1}\right)$ where $Z_{n}=\delta^{-1}(0)$.

For $\mathbb{P}^{1}-\{0,1, \infty\}$, it turns out (by a deep theorem of Soulé) that $\delta=0$. Then $H^{1}\left(G_{T}, U_{n}\right) \simeq$ $H^{1}\left(G_{T}, U_{2}\right) \times H^{1}\left(G_{T}, U^{2} / U^{3}\right) \times \cdots \times H^{1}\left(G_{T}, U^{n-1} / U^{n}\right)$, and this maps to $U_{n}^{\mathrm{dR}} / F^{0}$.

We can make

$$
H^{1}\left(G_{T}, U_{n}\right) \xrightarrow{\delta} H^{2}\left(G_{T}, U^{n} / U^{n+1}\right)
$$

from

$$
0 \rightarrow U^{n} / U^{n+1} \rightarrow U_{n+1} \rightarrow U_{n} \rightarrow 0
$$

Let ω be a 2-cocycle for U_{n} with values in U^{n} / U^{n+1} representing this extension. Then $\delta(c)\left(g_{1}, g_{2}\right)=\omega\left(c\left(g_{1}\right), c\left(g_{2}\right)\right) g_{1}^{-1} \alpha\left(g_{1}, c\left(g_{2}\right)\right)$, where $\alpha: U_{n} \times G_{T} \rightarrow U^{n} / U^{n+1}$ is defined by $\alpha(g, u)=g(\tilde{u}) \tilde{u}^{-1}$, where $u \mapsto \tilde{u}$ is a splitting $U_{n} \rightarrow U_{n+1}$ of the surjection above.

8. De Rham Picture

Let F be a field of characteristic 0 . Let X / F be a smooth affine curve. Let $\alpha_{1}, \ldots, \alpha_{m}$ be regular 1-forms giving a basis of $H_{\mathrm{dR}}^{1}(X)$. Then $U_{n}^{\mathrm{dR}}(X)$ is the category of unipotent vector bundles with flat connection (\mathcal{U}, ∇); i.e.,

$$
\mathcal{U}=\mathcal{U}^{0} \supset \mathcal{U}^{1} \supset \cdots \supset \mathcal{U}^{n+1}=0
$$

with $\left(\mathcal{U}^{i} / \mathcal{U}^{i+1}, \nabla\right) \simeq\left(\mathcal{O}_{X}^{r}, d\right)$.
Fact: $(\mathcal{U}, \nabla) \simeq\left(\mathcal{O}_{X}^{r}, d+\sum_{i=1}^{m} N_{i} \alpha_{i}\right)$ where the N_{i} are constant strictly upper triangular matrices.

Fix $b \in X(F)$. Let $F_{b}: U_{n}^{\mathrm{dR}}(X) \rightarrow(F$-vector spaces) be the fiber functor sending (\mathcal{U}, ∇) to \mathcal{U}_{b}.

Let $F\langle\langle A\rangle\rangle$ be the algebra of free noncommutative power series in variables A_{i}. There is a comultiplication $F\langle\langle A\rangle\rangle \rightarrow F\langle\langle A\rangle\rangle \hat{\otimes} F\langle\langle A\rangle\rangle$ sending A_{i} to $A_{i} \otimes 1+1 \otimes A_{i}$. Let $U^{\mathrm{dR}}(X)=$ $\pi^{\mathrm{dR}}(X ; b):=$ Aut $^{\otimes}\left(F_{b}\right)$. Fact: $U^{\mathrm{dR}}(X)$ is isomorphic to the set of grouplike elements in $F\langle\langle A\rangle\rangle:=F\left\langle\left\langle A_{1}, \ldots, A_{m}\right\rangle\right\rangle$

Also define $P^{\mathrm{dR}}(x)=\pi_{1}^{\mathrm{dR}}(X ; b, x):=\operatorname{Isom}^{\otimes}\left(F_{b}, F_{x}\right)$. This is isomorphic to the set of grouplike elements in $F\langle\langle A\rangle\rangle$.

If $F=\mathbb{C}$, then

$$
[\gamma] \in P^{\mathrm{dR}}(x) \subset \mathbb{C}\langle\langle A\rangle\rangle
$$

Parallel transport along γ is $P(\gamma): V_{b} \simeq V_{x}$.

$$
[\gamma]=\sum \int_{\gamma} \alpha_{w}[w]
$$

Here $w=A_{i_{1}} \cdots A_{i_{k}}$ and $\int_{\gamma} \alpha_{w}=\int_{\gamma} \alpha_{i_{1}} \cdots \alpha_{i_{k}}$.
Define the discrete subgroup of topological paths $L^{\mathrm{dR}} \subset U_{n}^{\mathrm{dR}}(X) \supset F^{0} U^{\mathrm{dR}}$.

Consider triples $\left(T, L_{T}, F^{0}\right)$ where T is a torsor for U^{dR}, F^{0} is given by the Hodge filtration on T and is an $F^{0} U^{\mathrm{dR}}$-torsor, and $L_{T} \subset T$ is an L^{dR}-torsor.

Such triples are classified by $F^{0} \backslash U_{n}^{\mathrm{dR}}(x) / L$. These are the higher Albanese varieties that Hain introduced. There is a map $\theta: X(\mathbb{C}) \rightarrow F^{0} \backslash U_{n}^{\mathrm{dR}}(x) / L$ sending x to $\left[P^{\mathrm{dR}}(x)\right]$.

In the case of $\mathbb{P}^{1}-\{0,1, \infty\}$ (containing b and x), we have $U^{\mathrm{dR}} \subset \mathbb{C}\langle\langle A, B\rangle\rangle$ and F^{0} turns out to be 0 . Then $\theta(x)=\left[\sum \int_{\gamma} \alpha_{w}[w]\right] \in U^{\mathrm{dR}} / L$.

Now suppose X / \mathbb{Q}_{p}. We have $U^{\mathrm{dR}} \supset F^{0}$ with ϕ-action. Consider $P^{\mathrm{dR}}(x) \simeq P^{\mathrm{dR}}(x \bmod p)$. Consider $\left(T, F^{0}, \phi\right)$ where ϕ acts compatibly on U and T. Then we have

$$
F^{0} \backslash U^{\mathrm{dR}} /\left(U^{\mathrm{dR}}\right)^{\phi=\mathrm{id}}
$$

with $\left(U^{\mathrm{dR}}\right)^{\phi=\mathrm{id}}=\{e\}$.
We get

$$
\theta: X\left(\mathbb{Z}_{p}\right) \rightarrow F^{0} \backslash U^{\mathrm{dR}}
$$

defined $\theta(x)=\left[\sum_{w} \int_{b}^{x} \alpha_{w}[w]\right]$.

$H_{f}^{1}\left(G_{p}, U_{n}^{\mathrm{et}}\right)$ is the set of elements of $H^{1}\left(G_{p}, U_{n}^{\mathrm{et}}\right)$ representing torsors that trivialize over $B_{\text {crys }}$.

And $D(T):=\operatorname{Spec}\left(\left(\mathcal{T} \otimes B_{\text {crys }}\right)^{G_{p}}\right)$ where $T=\operatorname{Spec} \mathcal{T}$.

9. Example

Let $X=\mathbb{P}^{1}-\{0,1, \infty\}$. Let $T=S \cup\{p\}$.

The group U_{2} is $\mathbb{Q}_{p}(1)^{2}$, and $H^{1}\left(G_{T}, U_{2}\right)=\mathbb{Z}\left[T^{-1}\right]^{\times} \times \mathbb{Z}\left[T^{-1}\right]^{\times}$and $H_{f}^{1}\left(G_{T}, U_{2}\right)=\mathbb{Z}\left[S^{-1}\right]^{\times} \times$ $\mathbb{Z}\left[S^{-1}\right]^{\times}$and $H_{f}^{1}\left(G_{p}, U_{2}\right)=\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}^{\times}$. The vertical isomorphism at left is there because $H^{1}\left(G_{F}, U^{2} / U^{3}\right) \simeq H^{1}\left(G_{T}, \mathbb{Q}_{p}(2)\right)=0$.

Recall $U_{n}=U / U^{n}$. We have

$$
0 \rightarrow \frac{U^{n}}{U^{n+1}} \rightarrow U_{n+1} \rightarrow U_{n} \rightarrow 0
$$

Let $r_{n}=\operatorname{dim} \frac{U^{n}}{U^{n+1}}$.
For a genus- g curve minus t points (with $t>0$), set $m=2 g+t-1$. Then $\sum_{i \nmid n} i r_{i}=m^{n}$. For example, for $\mathbb{P}^{1}-\{0,1, \infty\}$, we have $m=2$, and $r_{1}=2, r_{1}+2 r_{2}=4$ so $r_{2}=1$, $r_{1}+3 r_{3}=8$ so $r_{3}=2, r_{1}+2 r_{2}+4 r_{4}=16$ so $r_{4}=3$.

$$
\operatorname{dim} H^{1}\left(G_{T}, U^{n} / U^{n+1}\right)-\operatorname{dim} H_{6}^{2}\left(G_{T}, U^{n} / U^{n+1}\right)=\operatorname{dim}\left(U^{n} / U^{n+1}\right)^{-}
$$

where the - means the minus part for complex conjugation. We have $U^{n} / U^{n+1} \simeq \mathbb{Q}_{p}(n)^{r_{n}}$, and $H^{2}\left(G_{T}, \mathbb{Q}_{p}(n)\right)=0$ for all $n \geq 2$, so $\operatorname{dim} H^{1}\left(G_{T}, U / U^{2}\right)=2(|T|-1)$, and $\operatorname{dim} H^{1}\left(G_{T}, U^{n} / U^{n+1}\right)$ is r_{n} if n is odd and 0 if n is even. Thus

$$
\begin{aligned}
\operatorname{dim} H^{1}\left(G_{T}, U_{n}\right) & =2(|T|-1)+r_{3}+r_{5}+\cdots \\
\operatorname{dim} U_{n} & =r_{1}+r_{2}+\cdots+r_{n-1},
\end{aligned}
$$

so $\operatorname{dim} U_{n}>\operatorname{dim} H^{1}\left(G_{T}, U_{n}\right)$ eventually.

10. Elliptic curve analogue

Let E be an elliptic curve over \mathbb{Q} of rank 1 . Let $X=E-\{e\}$, e.g., $y^{2}=x^{3}+2$.

The space at lower right is 1-dimensional, so the space above it is 2-dimensional. The closure of the image of $X(\mathbb{Z})$ maps into $H_{\Sigma}^{1}\left(G_{T}, U_{3}\right)$ and $H_{\Sigma}^{1}\left(G_{T}, U_{2}\right)$.

When $n=2$, the image of $X\left(\mathbb{Z}_{\ell}\right) \rightarrow H^{1}\left(G_{\ell}, U_{n}\right)$ (where U_{n} is unipotent over \mathbb{Q}_{p}) is finite (Tamagawa). This forces the global image to satisfy additional conditions.

