NONABELIAN CHABAUTY

MINHYONG KIM

1. Multiple polylogs

Define

$$\mathcal{L}_{(k_1,\ldots,k_m)}(z) := \sum_{0 < n_1 < \cdots < n_m} \frac{z^{n_m}}{n_1^{k_1} \cdots n_m^{k_m}}.$$

For example,

$$\mathcal{L}_{(k)}(z) = \sum_{n>0} \frac{z^n}{n^k}.$$

Their special values are related to zeta and *L*-values. But we will be interested in the functions themselves.

Index them with words w on $\{A, B\}$. Define

$$\mathcal{L}_{\emptyset}(z) = 1$$

$$\mathcal{L}_{A^{n}}(z) = \frac{1}{n!} (\log z)^{n}$$

$$\mathcal{L}_{Aw}(z) = \int_{0}^{z} \frac{dt}{t} \mathcal{L}_{w}(t), \quad \text{if } w \neq A^{n}$$

$$\mathcal{L}_{Bw}(z) = \int_{0}^{z} \frac{dt}{1-t} \mathcal{L}_{w}(t), \quad \text{if } w \neq A^{n}$$

These are multivalued functions on $\mathbb{P}^1 - \{0, 1, \infty\}$. For z near 0, we have $\mathcal{L}_{(k_1, \dots, k_m)} = \mathcal{L}_w$ where $w := A^{k_1 - 1} B \cdots A^{k_m - 1} B$.

Define

$$G(z) = \sum_{w} \mathcal{L}_w(z)[w],$$

a function with values in $\mathbb{C}\langle\langle A, B\rangle\rangle$. Then $dG = \left(A\frac{dz}{z} + B\frac{dz}{1-z}\right)G(z)$. One can define *p*-adic versions. The coefficients are then *p*-adic multiple polylogs.

2. S-unit equations

Let S be a finite set of primes. Consider solutions to x + y = 1 with $x, y \in \mathbb{Z}[1/S]^{\times}$. If $S = \{\infty, \ell, q\}$ and $p \notin S$, There exists a polynomial $P(\mathcal{L}_w)$ in the \mathcal{L}_w with $|w| \leq 4$ and having \mathbb{Q}_p -coefficients such that $P(\mathcal{L}_w)(x) = 0$ for every solution (x, y) = 0.

For larger S, we need $|w| \leq N$, where N is explicitly computable.

Date: February 6–7, 2007.

3. Integral points on an elliptic curve

Let \mathcal{E} be the affine curve $y^2 = x^3 + 2$ over \mathbb{Z} . Let $\alpha = \frac{dx}{y}$ and $\beta = \frac{x \, dx}{y}$. Let p = 5. The fundamental group of $\mathcal{E}(\mathbb{C})$ is a free group on two generators. Let a = (-1, 1). Define Coleman functions

$$\mathcal{L}_A(z) = \int_a^z \frac{dx}{y}$$
$$\mathcal{L}_B(z) = \int_a^z \frac{x \, dx}{y}$$
$$\mathcal{L}_{AB}(z) = \int_a^z \frac{dx}{y} \mathcal{L}_B$$

on $\mathcal{E}(\mathbb{Z}_p)$. Then there exists a polynomial $P(\mathcal{L}_A, \mathcal{L}_B, \mathcal{L}_{AB})$ such that $P(\mathcal{L})(x, y) = 0$ for $(x, y) \in \mathcal{E}(\mathbb{Z})$.

4. General curves

Let $\mathbb{R} = \mathbb{Z}[1/S]$. Let $\mathcal{X} \to \operatorname{Spec} R$ be a smooth proper curve of genus g minus a finite étale divisor whose fibers are of degree t. So t is "the number of points at infinity". Define

$$m = \begin{cases} 2g & \text{if } t = 0\\ 2g + t - 1 & \text{if } t > 0 \end{cases}$$

Pick $p \notin S$. One can define $\mathcal{L}_w(z)$ where w runs over words on $\{A_1, \ldots, A_m\}$ on $\mathcal{X}(\mathbb{Z}_p)$. The A_i correspond to generators α_i of $H^1_{dR}(\mathcal{X})$.

Assume "motivic conjectures" (e.g., Bloch-Kato on surjectivity on *p*-adic Chern class maps or Fontaine-Mazur conjecture on representations of geometric origin). Then we can compute $N = N(\mathcal{X}, S, p)$ such that there exists a polynomial $P(\mathcal{L}_w)$ in the \mathcal{L}_w for $|w| \leq N$ such that $P(\mathcal{L}_w)(x) = 0$ for all $x \in \mathcal{X}(R)$. This would imply the theorems of Faltings and Siegel for curves over \mathbb{Q} .

5. Origin of polylogs

They come from algebraic functions on classifying spaces associated to unipotent π_1 's. Let X be a variety over a number field. Fix $b, x \in X$. Let $U^M = \pi_1^M(\overline{X}, b)$ and $P^M(x) = \pi_1^M(\overline{X}; b, x)$.

For a topological space X and points b, x, the space $\pi_1(X; b, x)$ is a torsor for $\pi_1(X; b)$. We have a map from X to a classifying space of torsors sending x to $\pi_1(X; b, x)$. Analogous statements hold for the other manifestations of π_1 .

As in Kiran's talk we have

where the space at lower left is nonabelian cohomology. The left map sends x to $\pi_1^{\text{et,un}}(\overline{X}; b, x)$.

The objects in the bottom row map to corresponding quotients for each n (we add a subscript n to each object), and these quotients are algebraic varieties. The vertical (and diagonal) maps are transcendental. The diagonal map has Zariski-dense image.

Inside C_n^{dR} the intersection of the images of C_{glob}^{et} and $\mathcal{X}(R_p)$ should be finite. This is true for $\mathbb{P}^1 - \{0, 1, \infty\}$ and for elliptic curves of rank 1, and in general assuming motivic conjectures.

There exists a nonzero algebraic function α on \mathcal{C}_n^{dR} such that α restricted to the image of \mathcal{C}_{glob}^{et} is 0. But $\mathcal{X}(R_p)$ has Zariski-dense image in \mathcal{C}_n^{dR} , so α pulls back to a nonzero function on $\mathcal{X}(R_p)$, and hence has finitely many zeros. Thus we get a bound on $\mathcal{X}(R)$.

6. Profinite case

Let $b \in Z$ be a variety. Let Cov(Z) be the set of finite étale covers Y of Z. Let F_b be the functor sending $Y \to Z$ to the fiber Y_b considered as a finite set. Define $\hat{\pi}_1(Z, b) := Aut(F_b)$. Define $\hat{\pi}_1(Z; b, x) := Isom(F_b, F_x)$; this is a torsor for $\hat{\pi}_1(Z, b)$ with continuous action.

If $Z = \overline{X}$ where X is over \mathbb{Q} and $x, b \in X(\mathbb{Q})$, then $G := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $\operatorname{Cov}(\overline{X})$, so G acts on $\hat{\pi}_1(Z, b)$ and $\hat{\pi}_1(Z; b, x)$. In particular, the latter is a G-equivariant torsor for $\hat{\pi}_1(Z, b)$; such G-equivariant torsors T are classified by $H^1(G, \hat{\pi}_1(\overline{X}, b))$. Namely, given T, choose $t \in T$ and for each $g \in G$, find the $\gamma_g \in \hat{\pi}_1(\overline{X}, b)$ such that $g(t) = t\gamma_g$; then $g \mapsto \gamma_g$ is a 1-cocycle representing an element of $H^1(G, \hat{\pi}_1(\overline{X}, b))$.

Let Z be a variety. Let \tilde{Z} be its universal covering (as a pro-variety, represented by a cofinal inverse system of Z_i 's).

For $x \in Z$,

$$\tilde{Z}_x \simeq \tilde{\pi}_1(Z; b, x).$$

If $Y \to Z$ and $y \in Y_b$, then there exists $\phi_y \colon \tilde{Z} \to Y$ mapping \tilde{b} to y, and $\phi_y(\tilde{x}) \in Y_x$. For an arbitrary manifold M,

$$M \leftarrow \tilde{M} = \bigcup_{m \in M} \pi_1(M; b, x).$$

Let X/\mathbb{Q} be a variety and $b \in X(\mathbb{Q})$. Then we have a map

$$X(\mathbb{Q}) \to H^1(G, \hat{\pi}_1(\overline{X}, b))$$
$$x \mapsto [\hat{\pi}_1(\overline{X}; b, x)].$$

If X = Z is an elliptic curve, then $\hat{\pi}_1(\overline{E}, e)$ is the $\hat{\mathbb{Z}}$ Tate module $T(\overline{E})$. The map $E(\mathbb{Q}) \to H^1(G, \hat{\pi}_1(\overline{E}, e))$ is the map from Kummer theory. (The H^1 is defined as an inverse limit, or using continuous cocycles.) Conjecturally it is an isomorphism (this is equivalent to the finiteness of the *p*-primary part of $\mathrm{III}(E)$ for all *p*).

If X/\mathbb{Q} is a curve of genus ≥ 2 , then

$$X(\mathbb{Q}) \to H^1(G, \hat{\pi}_1(\overline{X}, b))$$

is conjectured to be a bijection. (This is the version of Grothendieck's section conjecture in which a base point is fixed. This can be viewed as a nonabelian analogue of the conjecture that III is finite.) It is injective by the Mordell-Weil theorem for the Jacobian of X.

Remark 6.1. For any variety V over \mathbb{Q} with $b \in V(\mathbb{Q})$, injectivity of $V(\mathbb{Q}) \to H^1(G, \hat{\pi}_1(\overline{V}, b))$ should be viewed as a "nonabelian Mordell-Weil theorem".

7. Unipotent version

Let X/\mathbb{Q} be a smooth curve.

Let $U = U^{\text{et}} = U^{\text{et}}(\overline{X})$ be the pro-unipotent completion of $\hat{\pi}_1(\overline{X}, b)$ over \mathbb{Q}_p . The groups $U_n = L^{n+1} \setminus U$ are algebraic groups over \mathbb{Q}_p . Let E be the completed universal enveloping algebra of Lie U^{et} . Let $I \subseteq E$ be the augmentation ideal (the ideal generated by the Lie algebra). Let $E_n = E/I^{n+1}$. Then E is a projective system of continuous \mathbb{Q}_p -representation of $\hat{\pi}_1(\overline{X}, b)$. We get an étale pro-sheaf \mathcal{E} on \overline{X} such that $\mathcal{E}_b \simeq E$. Let $e \in E$ be the identity of the group. The pair (\mathcal{E}, e) is the universal \mathbb{Q}_p unipotent locally constant sheaf on \overline{X} : for any other pair (\mathcal{L}, ℓ) with $\ell \in \mathcal{L}_b$, there is a unique $\mathcal{E} \to \mathcal{L}$ mapping e to ℓ . In particular, there is a unique map $\mathcal{E} \to \mathcal{E} \otimes \mathcal{E}$ sending e to $e \otimes e \in (\mathcal{E} \otimes \mathcal{E})_b$.

Let $U_n(\overline{X})$ be the set of locally constant sheaves \mathcal{L} of \mathbb{Q}_p -vector spaces that are *unipotent*, i.e., admitting a filtration $\mathcal{L} = \mathcal{L}^0 \supset \mathcal{L}^1 \supset \cdots \supset \mathcal{L}^{n+1} = 0$ with $\mathcal{L}^i/\mathcal{L}^{i+1} \simeq \mathbb{Q}_p^{r_i}$ (a trivial local system). Define

$$P^{\operatorname{et}}(x) = \pi_1^{\operatorname{et},u}(\overline{X}, b, x) := \operatorname{Isom}(F_b, F_x)$$

where F_x is the functor from $U_n(\overline{X})$ to \mathbb{Q}_p -vector spaces taking \mathcal{L} to \mathcal{L}_x . Then $\pi_1^{\text{et},u}(\overline{X}; b, x)$ is the set of grouplike elements in \mathcal{E}_x .

Given $b, x \in X(\mathbb{Q})$, the set $P_n^{\text{et}}(x)$ carries a *G*-action, and $[P_n^{\text{et}}(x)] \in H^1(G, U_n^{\text{et}})$. We get $X(\mathbb{Q}) \to H^1(G, U_n^{\text{et}})$.

Given $\mathcal{X} \to R = \mathbb{Z}[1/S]$ and $p \notin S, T := S \cup \{p\}$, we get

$$[P_n^{\text{et}}(x)] \in H^1(G_T, U_n^{\text{et}})$$

where $G_T := \operatorname{Gal}(\mathbb{Q}_T/\mathbb{Q})$ where \mathbb{Q}_T is the maximal extension unramified outside T. Let $U_n = U/U^n$. We have

$$0 \to \frac{U^n}{U^{n+1}} \to U_{n+1} \to U_n \to 0$$

and $U^1 = U$, $U^2 = [U, U]$. So $U_2 = U/[U, U] \simeq H^1(\overline{X}, \mathbb{Q}_p) = H^1(\overline{X}, \mathbb{Q}_p)^{\wedge}$. We have

$$0 \to H^1(G_T, U^n/U^{n+1}) \to H^1(G_T, U_{n+1}) \to H^1(G_T, U_n) \to H^2(G_T, U^n/U^{n+1}).$$

In particular,

$$0 \to H^1(G_T, U^2/U^3) \to H^1(G_T, U_3) \to H^1(G_T, U_2) \xrightarrow{\delta} H^2(G_T, U^2/U^3).$$

Here δ is an algebraic map between \mathbb{Q}_p -varieties.

Consider $X(R) \hookrightarrow X(R_p)$. Effectively separate the *p*-adic distance between points in X(R). This would lead to an effective injection $X(R) \to J(R)/NJ(R)$.

$$\begin{array}{c} X(R) & \longrightarrow X(R_p) \\ & \downarrow \\ H^1(G_T, U_n^{\text{et}}) & \longrightarrow H^1(G_p, U_n^{\text{et}}) \end{array}$$

$$0 \to H^1(G_T, U^n/U^{n+1}) \to H^1(G_T, U_{n+1}) \to H^1(G_T, U_n) \stackrel{\delta}{\to} H^2(G_T, U^n/U^{n+1})$$

One can define variety structures on these such that $H^1(G_T, U_{n+1}) \simeq Z_n \times H^1(G_T, U^n/U^{n+1})$ where $Z_n = \delta^{-1}(0)$.

For $\mathbb{P}^1 - \{0, 1, \infty\}$, it turns out (by a deep theorem of Soulé) that $\delta = 0$. Then $H^1(G_T, U_n) \simeq H^1(G_T, U_2) \times H^1(G_T, U^2/U^3) \times \cdots \times H^1(G_T, U^{n-1}/U^n)$, and this maps to U_n^{dR}/F^0 .

We can make

$$H^1(G_T, U_n) \xrightarrow{\delta} H^2(G_T, U^n/U^{n+1})$$

from

$$0 \to U^n / U^{n+1} \to U_{n+1} \to U_n \to 0.$$

Let ω be a 2-cocycle for U_n with values in U^n/U^{n+1} representing this extension. Then $\delta(c)(g_1, g_2) = \omega(c(g_1), c(g_2))g_1^{-1}\alpha(g_1, c(g_2))$, where $\alpha \colon U_n \times G_T \to U^n/U^{n+1}$ is defined by $\alpha(g, u) = g(\tilde{u})\tilde{u}^{-1}$, where $u \mapsto \tilde{u}$ is a splitting $U_n \to U_{n+1}$ of the surjection above.

8. DE RHAM PICTURE

Let F be a field of characteristic 0. Let X/F be a smooth affine curve. Let $\alpha_1, \ldots, \alpha_m$ be regular 1-forms giving a basis of $H^1_{dR}(X)$. Then $U^{dR}_n(X)$ is the category of unipotent vector bundles with flat connection (\mathcal{U}, ∇) ; i.e.,

$$\mathcal{U} = \mathcal{U}^0 \supset \mathcal{U}^1 \supset \cdots \supset \mathcal{U}^{n+1} = 0$$

with $(\mathcal{U}^i/\mathcal{U}^{i+1}, \nabla) \simeq (\mathcal{O}^r_X, d).$

Fact: $(\mathcal{U}, \nabla) \simeq (\mathcal{O}_X^r, d + \sum_{i=1}^m N_i \alpha_i)$ where the N_i are constant strictly upper triangular matrices.

Fix $b \in X(F)$. Let $F_b: U_n^{dR}(X) \to (F$ -vector spaces) be the fiber functor sending (\mathcal{U}, ∇) to \mathcal{U}_b .

Let $F\langle\langle A \rangle\rangle$ be the algebra of free noncommutative power series in variables A_i . There is a comultiplication $F\langle\langle A \rangle\rangle \to F\langle\langle A \rangle\rangle \hat{\otimes} F\langle\langle A \rangle\rangle$ sending A_i to $A_i \otimes 1 + 1 \otimes A_i$. Let $U^{\mathrm{dR}}(X) = \pi^{\mathrm{dR}}(X;b) := \mathrm{Aut}^{\otimes}(F_b)$. Fact: $U^{\mathrm{dR}}(X)$ is isomorphic to the set of grouplike elements in $F\langle\langle A \rangle\rangle := F\langle\langle A_1, \ldots, A_m \rangle\rangle$

Also define $P^{dR}(x) = \pi_1^{dR}(X; b, x) := \text{Isom}^{\otimes}(F_b, F_x)$. This is isomorphic to the set of grouplike elements in $F\langle\langle A \rangle\rangle$.

If $F = \mathbb{C}$, then

$$[\gamma] \in P^{\mathrm{dR}}(x) \subset \mathbb{C}\langle\langle A \rangle\rangle$$

Parallel transport along γ is $P(\gamma): V_b \simeq V_x$.

$$[\gamma] = \sum \int_{\gamma} \alpha_w[w].$$

Here $w = A_{i_1} \cdots A_{i_k}$ and $\int_{\gamma} \alpha_w = \int_{\gamma} \alpha_{i_1} \cdots \alpha_{i_k}$.

Define the discrete subgroup of topological paths $L^{dR} \subset U_n^{dR}(X) \supset F^0 U^{dR}$.

Consider triples (T, L_T, F^0) where T is a torsor for U^{dR} , F^0 is given by the Hodge filtration on T and is an $F^0 U^{dR}$ -torsor, and $L_T \subset T$ is an L^{dR} -torsor.

Such triples are classified by $F^0 \setminus U_n^{dR}(x)/L$. These are the higher Albanese varieties that Hain introduced. There is a map $\theta: X(\mathbb{C}) \to F^0 \setminus U_n^{dR}(x)/L$ sending x to $[P^{dR}(x)]$.

In the case of $\mathbb{P}^1 - \{0, 1, \infty\}$ (containing b and x), we have $U^{dR} \subset \mathbb{C}\langle\langle A, B \rangle\rangle$ and F^0 turns out to be 0. Then $\theta(x) = [\sum_{n \to \infty} \int_{\gamma} \alpha_w[w]] \in U^{\mathrm{dR}}/L.$

Now suppose X/\mathbb{Q}_p . We have $U^{\mathrm{dR}} \supset F^0$ with ϕ -action. Consider $P^{\mathrm{dR}}(x) \simeq P^{\mathrm{dR}}(x \mod p)$. Consider (T, F^0, ϕ) where ϕ acts compatibly on U and T. Then we have

$$F^0 \backslash U^{\mathrm{dR}} / (U^{\mathrm{dR}})^{\phi = \mathrm{id}}$$

with $(U^{\mathrm{dR}})^{\phi=\mathrm{id}} = \{e\}.$ We get

$$\theta \colon X(\mathbb{Z}_p) \to F^0 \setminus U^{\mathrm{dR}}$$

defined $\theta(x) = [\sum_{w} \int_{b}^{x} \alpha_{w}[w]].$

 $H^1_f(G_p, U_n^{\text{et}})$ is the set of elements of $H^1(G_p, U_n^{\text{et}})$ representing torsors that trivialize over $B_{\rm crvs}$.

And $D(T) := \operatorname{Spec}((\mathcal{T} \otimes B_{\operatorname{crvs}})^{G_p})$ where $T = \operatorname{Spec} \mathcal{T}$.

9. EXAMPLE

Let $X = \mathbb{P}^1 - \{0, 1, \infty\}$. Let $T = S \cup \{p\}$.

The group U_2 is $\mathbb{Q}_p(1)^2$, and $H^1(G_T, U_2) = \mathbb{Z}[T^{-1}]^{\times} \times \mathbb{Z}[T^{-1}]^{\times}$ and $H^1_f(G_T, U_2) = \mathbb{Z}[S^{-1}]^{\times} \times \mathbb{Z}[T^{-1}]^{\times}$ $\mathbb{Z}[S^{-1}]^{\times}$ and $H^1_f(G_p, U_2) = \mathbb{Z}_p^{\times} \times \mathbb{Z}_p^{\times}$. The vertical isomorphism at left is there because $H^1(G_F, U^2/U^3) \simeq H^1(G_T, \mathbb{Q}_p(2)) = 0.$

Recall $U_n = U/U^n$. We have

$$0 \to \frac{U^n}{U^{n+1}} \to U_{n+1} \to U_n \to 0$$

Let $r_n = \dim \frac{U^n}{U^{n+1}}$.

For a genus-g curve minus t points (with t > 0), set m = 2g + t - 1. Then $\sum_{i \nmid n} ir_i = m^n$. For example, for $\mathbb{P}^1 - \{0, 1, \infty\}$, we have m = 2, and $r_1 = 2$, $r_1 + 2r_2 = 4$ so $r_2 = 1$, $r_1 + 3r_3 = 8$ so $r_3 = 2$, $r_1 + 2r_2 + 4r_4 = 16$ so $r_4 = 3$.

$$\dim H^1(G_T, U^n/U^{n+1}) - \dim H^2(G_T, U^n/U^{n+1}) = \dim(U^n/U^{n+1})^{-1}$$

where the – means the minus part for complex conjugation. We have $U^n/U^{n+1} \simeq \mathbb{Q}_p(n)^{r_n}$, and $H^2(G_T, \mathbb{Q}_p(n)) = 0$ for all $n \ge 2$, so dim $H^1(G_T, U/U^2) = 2(|T|-1)$, and dim $H^1(G_T, U^n/U^{n+1})$ is r_n if n is odd and 0 if n is even. Thus

dim
$$H^1(G_T, U_n) = 2(|T| - 1) + r_3 + r_5 + \cdots$$

dim $U_n = r_1 + r_2 + \cdots + r_{n-1},$

so dim $U_n > \dim H^1(G_T, U_n)$ eventually.

10. Elliptic curve analogue

Let E be an elliptic curve over \mathbb{Q} of rank 1. Let $X = E - \{e\}$, e.g., $y^2 = x^3 + 2$.

$$H_{f}^{1}(G_{T}, U_{2}/U_{3}) \longrightarrow U_{3}^{dR}/F_{0} = \mathbb{Q}_{p}(1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_{f}^{1}(G_{T}, U_{3}) \longrightarrow U_{3}^{dR}/F_{0}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$H_{f}^{1}(G_{T}, U_{2}) \longrightarrow U_{2}^{dR}/F_{0}$$

The space at lower right is 1-dimensional, so the space above it is 2-dimensional. The closure of the image of $X(\mathbb{Z})$ maps into $H^1_{\Sigma}(G_T, U_3)$ and $H^1_{\Sigma}(G_T, U_2)$.

When n = 2, the image of $X(\mathbb{Z}_{\ell}) \to H^1(G_{\ell}, U_n)$ (where U_n is unipotent over \mathbb{Q}_p) is finite (Tamagawa). This forces the global image to satisfy additional conditions.