Introduction to Explicit Chabauty Methods

William McCallum

Department of Mathematics
University Arizona

BIRS workshop on explicit methods for rational points on curves

Given a curve X of genus g over \mathbb{Q}, find $X(\mathbb{Q})$

- E.g., $y^{2}=x(x-1)(x-2)(x-5)(x-6)$
- There are two parts to the problem
- generating points
- knowing when to stop.
- Knowing when to stop includes knowing when not to bother starting, i.e., deciding if $X(\mathbb{Q})$ is non-empty.
- From now on we assume we are given a point $O \in X(\mathbb{Q})$.
- If $g=0$, we can find an explicit algebraic parameterization of $X(\mathbb{Q})$ by \mathbb{Q}.
- If $g=1$ we have pretty good methods for finding explicit generators for $X(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times$ (finite group $)$.
- If $g \geq 2$, there are only finitely many points (Faltings). Generating points is easy in practice but knowing when to stop is hard.

Strange idea: identify $X(\mathbb{Q})$ as a subset of $J(\mathbb{Q})$

- J, the jacobian of X, is a proper g-dimensional group variety: why should it be easier to work with?
- Good cohomological machinery for bounding $J(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times($ finite group) without knowing equations for J.
- Use the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-equivariant isomorphism

$$
J(\overline{\mathbb{Q}}) \simeq \frac{\{\text { Divisors on } \bar{X}\}}{\{\text { Divisors of functions }\}}
$$

$$
\iota: X(\mathbb{Q}) \hookrightarrow J(\mathbb{Q}), \quad P \mapsto[P-O]
$$

- Given $[D] \in J(\mathbb{Q})$, look for non-zero functions f with $(f) \geq-D-O$, then $P=D+O+(f)$ is rational.
- What if $J(\mathbb{Q})$ is not finite?

If $J(\mathbb{Q})$ is infinite, we seek analytic functions that vanish on the rational points

$$
X\left(\mathbb{Q}_{p}\right) \longleftrightarrow \underset{\bigwedge_{J(\mathbb{Q})}^{J}}{J\left(\mathbb{Q}_{p}\right)}
$$

- Chabauty: if $\operatorname{dim} \overline{J(\mathbb{Q})}<g$, then $X\left(\mathbb{Q}_{p}\right) \cap \overline{J(\mathbb{Q})}$ should be finite.
- Two approaches to finding the elements of this set explicitly:
- look for analytic functions on $J\left(\mathbb{Q}_{p}\right)$ that vanish on $\overline{J(\mathbb{Q})}$ and find their zeroes $X\left(\mathbb{Q}_{p}\right)$ (Coleman)
- look for analytic functions on $J\left(\mathbb{Q}_{p}\right)$ that vanish on $X\left(\mathbb{Q}_{p}\right)$ and find their zeroes on $\overline{J(\mathbb{Q})}$ (Flynn).

Digression: why not use real points?

- Mazur conjectures that $\overline{J(\mathbb{Q})}$ is open in the Zariski closure of $J(\mathbb{Q})$.
- Thus, if $\operatorname{dim} \overline{J(\mathbb{Q})}<g$, then there is a non-trivial quotient A of J such that $A(\mathbb{Q})$ is finite.
- Could work with $X \rightarrow A$.

Find analytic functions using p-adic integration on $J\left(\mathbb{Q}_{p}\right)$

- For $\omega_{\jmath} \in H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right)$, we have

$$
\eta_{J}: J\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}, \quad Q \mapsto \int_{0}^{Q} \omega_{J}
$$

characterized uniquely by the following two properties:

1. It is a homomorphism.
2. It is calculated by formal integration on some open $U \subset J\left(\mathbb{Q}_{p}\right)$.

- Translation invariance of ω gives homomorphism property:

$$
\eta_{J}(P+Q)=\eta_{J}(P)+C .
$$

- Putting all these together we get the logarithm

$$
\log : J\left(\mathbb{Q}_{p}\right) \rightarrow T
$$

where $T=\operatorname{Hom}\left(H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right), \mathbb{Q}_{p}\right)$, the tangent space.

- There is a one-to-one correspondence between linear functionals λ on T and differentials ω_{J} such that $\lambda \circ \log =\eta_{J}$.

Structure of the closure of the rational points

Lemma
Define $r^{\prime}:=\operatorname{dim} \overline{J(\mathbb{Q})}$ and $r:=\operatorname{rank} J(\mathbb{Q})$. Then $r^{\prime} \leq r$.
Proof:

$$
\begin{aligned}
& r^{\prime}=\operatorname{dim} \overline{J(\mathbb{Q})}=\operatorname{dim} \log (\overline{J(\mathbb{Q})}), \quad \text { and } \quad \log (\overline{J(\mathbb{Q})})=\overline{\log J(\mathbb{Q})} \\
& r^{\prime}=\operatorname{rank}_{\mathbb{Z}_{p}}\left(\mathbb{Z}_{p} \log J(\mathbb{Q})\right) \leq \operatorname{rank}_{\mathbb{Z}} \log J(\mathbb{Q}) \leq \operatorname{rank}_{\mathbb{Z}} J(\mathbb{Q})=r .
\end{aligned}
$$

Theorem (Chabauty)

Suppose $g \geq 2$ and that there is a prime p such that $r^{\prime}<g$. Then $X\left(\mathbb{Q}_{p}\right) \cap \overline{J(\mathbb{Q})}$ is finite (and hence so is $X(\mathbb{Q})$).

- The hypothesis yields η_{J} on $J\left(\mathbb{Q}_{p}\right)$ that vanishes on $\overline{J(\mathbb{Q})}$.
- Restricting this to $X\left(\mathbb{Q}_{p}\right)$ gives us a locally-analytic function that vanishes on $X(\mathbb{Q})$.
- Why only finitely many zeros? How to count them?

p-adic integration on the curve X

- Suppose $X_{\mathbb{Q}_{p}}$ has good reduction, with model X over \mathbb{Z}_{p}.
- Then $J_{\mathbb{Q}_{p}}$ has a Néron model J, and $J_{\mathbb{F}_{p}}$ is the jacobian of $X_{\mathbb{F}_{p}}$.
- Restriction from $J_{\mathbb{Q}_{p}}$ to $X_{\mathbb{Q}_{p}}$ induces an isomorphism

$$
H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right) \simeq H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)
$$

- If ω is the restriction of ω_{J} to $X_{\mathbb{Q}_{p}}$, define

$$
\int_{Q}^{Q^{\prime}} \omega:=\int_{0}^{\left[Q^{\prime}-Q\right]} \omega_{J}
$$

- If $\sum\left(Q_{i}^{\prime}-Q_{i}\right)$ is the divisor of a function, then $\sum \int_{Q_{i}}^{Q_{i}^{\prime}} \omega=0$.
- If Q and Q^{\prime} are in the same residue class, then

$$
\int_{Q}^{Q^{\prime}} \omega=F\left(Q^{\prime}\right)-F(Q)
$$

for a power series F in a local parameter t on X with $d F=\omega$.

Integration on residue classes

- A residue class is the preimage of a point under the reduction $\operatorname{map} X\left(\mathbb{Q}_{p}\right) \rightarrow X\left(\mathbb{F}_{p}\right)$.
- A parameter t is a regular function on an open neighborhood of \tilde{Q} in $X_{\mathbb{F}_{p}}$, whose restriction to the special fiber is a uniformizer at \tilde{Q}.
- The function t maps the residue class bijectively to $p \mathbb{Z}_{p}$.
- If ω is scaled so that it reduces to a nonzero $\tilde{\omega} \in H^{0}\left(X_{\mathbb{F}_{p}}, \Omega^{1}\right)$, then $\omega=w(t) d t$ on the residue class for some power series $w(t) \in \mathbb{Z}_{p}[[t]]$ such that $w(t) \not \equiv 0(\bmod p)$.
- The function η on the residue class is represented by a series $I(t) \in \mathbb{Q}_{p}[[t]]$ (possibly no longer in $\mathbb{Z}_{p}[[t]]$) whose derivative is $w(t)$.

Counting zeros of power series on $p \mathbb{Z}_{p}$

Lemma (Baby Newton)
Suppose $f(t) \in \mathbb{Q}_{p}[[t]]$ is such that $f^{\prime}(t) \in \mathbb{Z}_{p}[[t]]$. Let

$$
m=\operatorname{ord}_{t=0}\left(f^{\prime}(t) \bmod p\right)
$$

If $m<p-2$, then f has at most $m+1$ zeros in $p \mathbb{Z}_{p}$.
Proof.
Write $f(t)=\sum a_{i} t^{i}$. We have

$$
v_{p}\left(a_{m+1}\right)=0, \quad v_{p}\left(a_{i}\right) \geq-v_{p}(i), \quad i>m+1
$$

So the Newton polygon of f has slopes greater than -1 to the right of $(m+1,0)$.

- Coleman gives an estimate for an arbitrary p-adic field.
- If the coefficient of t^{p-1} in $f^{\prime}(t)$ is in $p \mathbb{Z}_{p}$, then one need assume only $m<2 p-2$ to obtain the same conclusion.

In summary: an integral vanishing on rational points

If $r^{\prime}<g$, we have ω such that
(i) If $Q_{i}, Q_{i}^{\prime} \in X\left(\mathbb{Q}_{p}\right)$ are such that $\sum\left(Q_{i}^{\prime}-Q_{i}\right)$ is the divisor of a rational function, or more generally $\left[\sum\left(Q_{i}^{\prime}-Q_{i}\right)\right]$ is a torsion element of $J\left(\mathbb{Q}_{p}\right)$, then $\sum \int_{Q_{i}}^{Q_{i}^{\prime}} \omega=0$.
(ii) If $Q, Q^{\prime} \in X\left(\mathbb{Q}_{p}\right)$ have the same reduction in $X\left(\mathbb{F}_{p}\right)$, then $\int_{Q}^{Q^{\prime}} \omega$ can be calculated by expanding in power series in a local parameter t on the curve X.
(iii) If $Q_{i}, Q_{i}^{\prime} \in X\left(\mathbb{Q}_{p}\right)$ are such that $\left[\sum\left(Q_{i}^{\prime}-Q_{i}\right)\right] \in \overline{J(\mathbb{Q})}$, then $\sum \int_{Q_{i}}^{Q_{i}^{\prime}} \omega=0$.

Theorem (Coleman)

Let X, J, p, r^{\prime} be as in Chabauty's theorem, suppose p is a prime of good reduction.

1. Let ω satisfy (i)-(iii), and scale so $\tilde{\omega} \neq 0$. Suppose $\tilde{Q} \in X\left(\mathbb{F}_{p}\right)$. Let $m=\operatorname{ord}_{\tilde{Q}} \tilde{\omega}$. If $m<p-2$, then the number of points in $X(\mathbb{Q})$ reducing to \tilde{Q} is at most $m+1$.
2. If $p>2 g$, then $\# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{p}\right)+(2 g-2)$.

Proof.

1. Fix $Q \in X(\mathbb{Q})$ reducing to \tilde{Q}. Then $\int_{Q}^{Q^{\prime}} \omega=0$ for any $Q^{\prime} \in X(\mathbb{Q})$ reducing to \tilde{Q}. As a function of $Q^{\prime}, \int_{Q}^{Q^{\prime}} \omega$ can be expressed as a power series $I(t)$. The Lemma applied to $I(t)$ shows that $I(t)$ has at most $m+1$ zeros, so there are at most $m+1$ rational points Q^{\prime} in the residue class.
2. By the Riemann-Roch theorem, the total number of zeros of $\tilde{\omega}$ in $X\left(\overline{\mathbb{F}}_{p}\right)$ is $2 g-2$. In particular, $m \leq 2 g-2<p-2$. Sum (1) over all $\tilde{Q} \in X\left(\mathbb{F}_{p}\right)$.

Computational effectiveness

- Can have $r \geq g$, which makes $r^{\prime} \leq g$ unlikely.
- Could be computationally difficult to bound r, and hence r^{\prime}.
- The zero set of the integral of ω may be strictly larger than $\overline{J(\mathbb{Q})}$, even if one uses enough independent integrals.
- If the p-adic submanifolds $X\left(\mathbb{Q}_{p}\right)$ and $\overline{J(\mathbb{Q})}$ in $J\left(\mathbb{Q}_{p}\right)$ are tangent, it may be impossible to prove that they intersect.
- Even if $\#\left(X\left(\mathbb{Q}_{p}\right) \cap \overline{J(\mathbb{Q})}\right)$ is computed exactly, the true value of $\# X(\mathbb{Q})$ could be smaller; in other words, some of the intersection points could be irrational points in $X\left(\mathbb{Q}_{p}\right)$.

Example: $y^{2}=x(x-1)(x-2)(x-5)(x-6)$

- This curve has good reduction at $p=7$, and

$$
X\left(\mathbb{F}_{7}\right)=\{\infty,(0,0),(1,0),(2,0),(5,0),(6,0),(3,6),(3,-6)\} .
$$

- A descent calculation by Gordon and Grant shows that $J(\mathbb{Q})$ has rank 1. Coleman's theorem says $\# X(\mathbb{Q}) \leq 10$.

$$
X(\mathbb{Q})=\{\infty,(0,0),(1,0),(2,0),(5,0),(6,0),(3, \pm 6),(10, \pm 120)\} .
$$

Example: $y^{2}=x^{6}+8 x^{5}+22 x^{4}+22 x^{3}+5 x^{2}+6 x+1$ Theorem (Flynn-Poonen-Schaefer)

$$
X(\mathbb{Q})=\left\{\infty^{+}, \infty^{-},(0, \pm 1),(-3, \pm 1)\right\}
$$

Out of the box, Coleman's Theorem needs $p=5$, which gives $\# X(\mathbb{Q}) \leq 9$. However X has good reduction at 3 , and

$$
\begin{gathered}
X\left(\mathbb{F}_{3}\right)=\left\{\infty^{+}, \infty^{-},(0, \pm 1)\right\} . \\
\tilde{\omega}=a \frac{d x}{y}+b \frac{x d x}{y} . \\
y=\sqrt{x^{6}+8 x^{5}+22 x^{4}+22 x^{3}+5 x^{2}+6 x+1} \equiv 1+x^{2}+\cdots \\
\tilde{\omega}=\frac{x d x}{y}=\left(x-x^{3}+\cdots\right) d x \\
\# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{3}\right)+(2 g-2)=4+(2 \cdot 2-2)=6 .
\end{gathered}
$$

Calculating integrals explicitly

$$
\begin{aligned}
\int_{(0,1)}^{(-3,1)} \frac{d x}{y} & =\int_{0}^{-3}\left(1+6 x+5 x^{2}+22 x^{3}+22 x^{4}+8 x^{5}+x^{6}\right)^{-1 / 2} d x \\
& =\int_{0}^{-3}\left(1-3 x+11 x^{2}-56 x^{3}+\cdots\right) d x \\
& =\left.\left(x-3 \frac{x^{2}}{2}+11 \frac{x^{3}}{3}-56 \frac{x^{4}}{4}+\cdots\right)\right|_{0} ^{-3} \\
& =(-3)-\frac{3}{2}(-3)^{2}+\frac{11}{3}(-3)^{3}-\frac{56}{4}(-3)^{4}+\cdots \\
& \equiv 2 \cdot 3+3^{4}\left(\bmod 3^{5}\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\int_{(0,1)}^{(-3,1)} \frac{x d x}{y} & =\left.\left(\frac{x^{2}}{2}-3 \frac{x^{3}}{3}+11 \frac{x^{4}}{4}-56 \frac{x^{5}}{5}+\cdots\right)\right|_{0} ^{-3} \\
& \equiv 2 \cdot 3^{2}+2 \cdot 3^{3}\left(\bmod 3^{3}\right) .
\end{aligned}
$$

(Continued)

$$
\begin{aligned}
& \omega=\epsilon \frac{d x}{y}+\frac{x d x}{y}, \quad \int_{(0,1)}^{(-3,1)} \omega=0 \\
&\left(2 \cdot 3+3^{4}+\cdots\right) \epsilon+\left(2 \cdot 3^{2}+2 \cdot 3^{3}+\cdots\right)=0 \\
& \epsilon \equiv 2 \cdot 3+3^{2}+2 \cdot 3^{3}\left(\bmod 3^{4}\right) \\
& I(t):=\int_{(0,1)}^{Q_{t}} \omega, \quad Q_{t}:=\left(t,\left(1+6 t+5 t^{2}+22 t^{3}+22 t^{4}+8 t^{5}+t^{6}\right)^{1 / 2}\right) \\
&= \int_{(0,1)}^{Q_{t}}\left(\epsilon \frac{d x}{y}+\frac{x d x}{y}\right) \\
&= \int_{0}^{t}(\epsilon+x)\left(1+6 x+5 x^{2}+22 x^{3}+22 x^{4}+8 x^{5}+x^{6}\right)^{-1 / 2} d x \\
&= \epsilon t+(-3 \epsilon+1) \frac{t^{2}}{2}+(11 \epsilon-3) \frac{t^{3}}{3}+\cdots .
\end{aligned}
$$

Computing integrals between residue classes

1. Restrict from $J\left(\mathbb{Q}_{p}\right)$:

- Inside each residue class of J there is torsion point T, which can be used to set the constant of integration since $\int_{0}^{T} \omega_{J}=0$.
- Can be chosen to be rational over \mathbb{Q}_{p} if it has order prime to p.

2. Set the constant directly on $X\left(\mathbb{Q}_{p}\right)$ using Coleman's theory of p-adic integration and the idea of a Teichmüller point.
3. Ultimately we care only about the residue classes in $J\left(\mathbb{Q}_{p}\right)$ containing a point of $J(\mathbb{Q})$. For each of these residue classes, we compute an explicit divisor representing a point in $J(\mathbb{Q})$ in the residue class, and use it to set the constant of integration. This idea is due to Wetherell.

Elliptic Chabauty

- Can replace $X \hookrightarrow J$ by any morphism to an abelian variety $X \rightarrow A$.
- Factors through $J \rightarrow A$; Chabauty's argument applies if $\operatorname{rank} A(\mathbb{Q})<\operatorname{dim} A$.
- Special case: $X_{k} \rightarrow E$ for an elliptic curve E over some finite extension k of \mathbb{Q}
- We get a map from X to $A:=\operatorname{Res}_{k / \mathbb{Q}} E$, an abelian variety of dimension $[k: \mathbb{Q}]$ such that $A(\mathbb{Q}) \simeq E(k)$.
- Typically the induced map $J \rightarrow A$ will be surjective; in this case one needs rank $E(k)<[k: \mathbb{Q}]$ to apply Chabauty's argument.

Example: $y^{2}=x^{6}+x^{2}+1$ (Diophantus)

- J is isogenous over \mathbb{Q} to a product of elliptic curves, each of rank 1 , so $r^{\prime}=r=2$.
- Wetherell used descent to replace the problem with the problem for finite étale covers of higher genus to which the method could be applied.
- He succeeded in proving that

$$
X(\mathbb{Q})=\left\{(\pm 1 / 2, \pm 9 / 8),(0, \pm 1), \infty^{+}, \infty^{-}\right\}
$$

Stoll's improvement

Coleman's theorem requires $r^{\prime}<g$, but if $r^{\prime}<g-1$, then one can improve the bound. For instance, if $p>2 g$, one can prove

$$
\# X(\mathbb{Q}) \leq \# X\left(\mathbb{F}_{p}\right)+2 r^{\prime}
$$

Bad reduction

Theorem

Let X, p, r^{\prime} be as in Chabauty's theorem, let \mathcal{X} over \mathbb{Z}_{p} be a minimal regular model for $X_{\mathbb{Q}_{p}}$, and let \mathcal{X}_{s} over \mathbb{F}_{p} be its special fiber.

1. Let ω be a nonzero 1 -form in $H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ satisfying conditions (i)-(iii). Let C be a component of multiplicity 1 in \mathcal{X}_{s}, and define $C^{\text {smooth }}:=C \cap \mathcal{X}^{\text {smooth }}$. Scale ω by a power of p so that it reduces to a nonzero 1-form $\tilde{\omega} \in H^{0}\left(C^{\text {smooth }}, \Omega^{1}\right)$. Let $\tilde{Q} \in C^{\operatorname{smooth}}\left(\mathbb{F}_{p}\right)$. Let $m=\operatorname{ord}_{\tilde{Q}} \tilde{\omega}$. If $m<p-2$, then the number of points in $X(\mathbb{Q})$ reducing to \tilde{Q} is at most $m+1$.
2. If $p>2 g$, then

$$
\# X(\mathbb{Q}) \leq \# \mathcal{X}_{s}^{\text {smooth }}\left(\mathbb{F}_{p}\right)+(2 g-2)
$$

