## Introduction to Explicit Chabauty Methods

#### William McCallum

Department of Mathematics University Arizona

BIRS workshop on explicit methods for rational points on curves

Given a curve X of genus g over  $\mathbb{Q}$ , find  $X(\mathbb{Q})$ 

► E.g., 
$$y^2 = x(x-1)(x-2)(x-5)(x-6)$$

- There are two parts to the problem
  - generating points
  - knowing when to stop.
- ► Knowing when to stop includes knowing when not to bother starting, i.e., deciding if X(Q) is non-empty.
- From now on we assume we are given a point  $O \in X(\mathbb{Q})$ .
- If g = 0, we can find an explicit algebraic parameterization of X(Q) by Q.
- If g = 1 we have pretty good methods for finding explicit generators for X(Q) ≃ Z<sup>r</sup> × (finite group).
- ► If g ≥ 2, there are only finitely many points (Faltings). Generating points is easy in practice but knowing when to stop is hard.

# Strange idea: identify $X(\mathbb{Q})$ as a subset of $J(\mathbb{Q})$

- ► J, the jacobian of X, is a proper g-dimensional group variety: why should it be easier to work with?
- Good cohomological machinery for bounding
   J(ℚ) ≃ ℤ<sup>r</sup> × (finite group) without knowing equations for J.
- Use the  $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -equivariant isomorphism

$$J(\overline{\mathbb{Q}}) \simeq rac{\{ ext{Divisors on } \overline{X}\}}{\{ ext{Divisors of functions}\}}$$

$$\iota: X(\mathbb{Q}) \hookrightarrow J(\mathbb{Q}), \quad P \mapsto [P - O],$$

- Given  $[D] \in J(\mathbb{Q})$ , look for non-zero functions f with  $(f) \ge -D O$ , then P = D + O + (f) is rational.
- ► What if J(Q) is not finite?

If  $J(\mathbb{Q})$  is infinite, we seek analytic functions that vanish on the rational points



- Chabauty: if dim J(Q) < g, then X(Q<sub>p</sub>) ∩ J(Q) should be finite.
- Two approaches to finding the elements of this set explicitly:
  - ▶ look for analytic functions on J(Q<sub>p</sub>) that vanish on J(Q) and find their zeroes X(Q<sub>p</sub>) (Coleman)
  - ▶ look for analytic functions on J(Q<sub>p</sub>) that vanish on X(Q<sub>p</sub>) and find their zeroes on J(Q) (Flynn).

Digression: why not use real points?



- ► Mazur conjectures that J(Q) is open in the Zariski closure of J(Q).
- ► Thus, if dim J(Q) < g, then there is a non-trivial quotient A of J such that A(Q) is finite.</p>
- Could work with  $X \to A$ .

Find analytic functions using *p*-adic integration on  $J(\mathbb{Q}_p)$ 

▶ For  $\omega_J \in H^0(J_{\mathbb{Q}_p}, \Omega^1)$ , we have

$$\eta_J \colon J(\mathbb{Q}_p) \to \mathbb{Q}_p, \quad Q \mapsto \int_0^Q \omega_J$$

characterized uniquely by the following two properties:

- 1. It is a homomorphism.
- 2. It is calculated by formal integration on some open  $U \subset J(\mathbb{Q}_p)$ .
- Translation invariance of  $\omega$  gives homomorphism property:

$$\eta_J(P+Q)=\eta_J(P)+C.$$

Putting all these together we get the logarithm

$$\log: J(\mathbb{Q}_p) \to T,$$

where  $T = \text{Hom}(H^0(J_{\mathbb{Q}_p}, \Omega^1), \mathbb{Q}_p)$ , the tangent space.

► There is a one-to-one correspondence between linear functionals λ on T and differentials ω<sub>J</sub> such that λ ∘ log = η<sub>J</sub>.

## Structure of the closure of the rational points

Lemma Define  $r' := \dim \overline{J(\mathbb{Q})}$  and  $r := \operatorname{rank} J(\mathbb{Q})$ . Then  $r' \leq r$ . Proof:

$$\begin{split} r' &= \dim \overline{J(\mathbb{Q})} = \dim \log \left( \overline{J(\mathbb{Q})} \right), \quad \text{and} \quad \log \left( \overline{J(\mathbb{Q})} \right) = \overline{\log J(\mathbb{Q})} \\ r' &= \operatorname{rank}_{\mathbb{Z}_p} \left( \mathbb{Z}_p \log J(\mathbb{Q}) \right) \leq \operatorname{rank}_{\mathbb{Z}} \log J(\mathbb{Q}) \leq \operatorname{rank}_{\mathbb{Z}} J(\mathbb{Q}) = r. \end{split}$$

### Theorem (Chabauty)

Suppose  $g \ge 2$  and that there is a prime p such that r' < g. Then  $X(\mathbb{Q}_p) \cap \overline{J(\mathbb{Q})}$  is finite (and hence so is  $X(\mathbb{Q})$ ).

- The hypothesis yields  $\eta_J$  on  $J(\mathbb{Q}_p)$  that vanishes on  $\overline{J(\mathbb{Q})}$ .
- ► Restricting this to X(Q<sub>p</sub>) gives us a locally-analytic function that vanishes on X(Q).
- Why only finitely many zeros? How to count them?

## p-adic integration on the curve X

- ▶ Suppose  $X_{\mathbb{Q}_p}$  has good reduction, with model X over  $\mathbb{Z}_p$ .
- ► Then J<sub>Q<sub>p</sub></sub> has a Néron model J, and J<sub>F<sub>p</sub></sub> is the jacobian of X<sub>F<sub>p</sub></sub>.
- ▶ Restriction from  $J_{\mathbb{Q}_p}$  to  $X_{\mathbb{Q}_p}$  induces an isomorphism

$$H^0(J_{\mathbb{Q}_p},\Omega^1)\simeq H^0(X_{\mathbb{Q}_p},\Omega^1).$$

▶ If  $\omega$  is the restriction of  $\omega_J$  to  $X_{\mathbb{Q}_p}$ , define

$$\int_Q^{Q'} \omega := \int_0^{[Q'-Q]} \omega_J.$$

• If  $\sum (Q'_i - Q_i)$  is the divisor of a function, then  $\sum \int_{Q_i}^{Q'_i} \omega = 0$ . • If Q and Q' are in the same residue class, then

$$\int_Q^{Q'} \omega = F(Q') - F(Q)$$

for a power series F in a local parameter t on X with  $dF = \omega$ .

## Integration on residue classes

- A residue class is the preimage of a point under the reduction map X(ℚ<sub>p</sub>) → X(𝔽<sub>p</sub>).
- A parameter t is a regular function on an open neighborhood of Q̃ in X<sub>𝔽ρ</sub>, whose restriction to the special fiber is a uniformizer at Q̃.
- The function t maps the residue class bijectively to  $p\mathbb{Z}_p$ .
- If ω is scaled so that it reduces to a nonzero ũ ∈ H<sup>0</sup>(X<sub>F<sub>ρ</sub></sub>, Ω<sup>1</sup>), then ω = w(t) dt on the residue class for some power series w(t) ∈ Z<sub>p</sub>[[t]] such that w(t) ≠ 0 (mod p).
- The function η on the residue class is represented by a series *I*(*t*) ∈ Q<sub>p</sub>[[*t*]] (possibly no longer in Z<sub>p</sub>[[*t*]]) whose derivative is *w*(*t*).

Counting zeros of power series on  $p\mathbb{Z}_p$ 

Lemma (Baby Newton)

Suppose  $f(t) \in \mathbb{Q}_p[[t]]$  is such that  $f'(t) \in \mathbb{Z}_p[[t]]$ . Let

 $m = \operatorname{ord}_{t=0}(f'(t) \mod p)$ 

If m , then f has at most <math>m + 1 zeros in  $p\mathbb{Z}_p$ .

#### Proof. Write $f(t) = \sum a_i t^i$ . We have

$$v_p(a_{m+1})=0, \quad v_p(a_i)\geq -v_p(i), \quad i>m+1.$$

So the Newton polygon of f has slopes greater than -1 to the right of (m + 1, 0).

- Coleman gives an estimate for an arbitrary p-adic field.
- If the coefficient of t<sup>p−1</sup> in f'(t) is in pZ<sub>p</sub>, then one need assume only m < 2p − 2 to obtain the same conclusion.</p>

In summary: an integral vanishing on rational points

If r' < g, we have  $\omega$  such that

- (i) If Q<sub>i</sub>, Q'<sub>i</sub> ∈ X(Q<sub>p</sub>) are such that ∑(Q'<sub>i</sub> − Q<sub>i</sub>) is the divisor of a rational function, or more generally [∑(Q'<sub>i</sub> − Q<sub>i</sub>)] is a torsion element of J(Q<sub>p</sub>), then ∑∫<sub>Q<sub>i</sub></sub><sup>Q'<sub>i</sub></sup> ω = 0.
- (ii) If  $Q, Q' \in X(\mathbb{Q}_p)$  have the same reduction in  $X(\mathbb{F}_p)$ , then  $\int_Q^{Q'} \omega$  can be calculated by expanding in power series in a local parameter t on the curve X.
- (iii) If  $Q_i, Q'_i \in X(\mathbb{Q}_p)$  are such that  $[\sum (Q'_i Q_i)] \in \overline{J(\mathbb{Q})}$ , then  $\sum \int_{Q_i}^{Q'_i} \omega = 0$ .

#### Theorem (Coleman)

Let X, J, p, r' be as in Chabauty's theorem, suppose p is a prime of good reduction.

 Let ω satisfy (i)-(iii), and scale so ũ ≠ 0. Suppose Q̃ ∈ X(𝔽<sub>p</sub>). Let m = ord<sub>Q̃</sub> ũ. If m 
 of points in X(ℚ) reducing to Q̃ is at most m + 1.

2. If p > 2g, then  $\#X(\mathbb{Q}) \le \#X(\mathbb{F}_p) + (2g - 2)$ .

#### Proof.

- 1. Fix  $Q \in X(\mathbb{Q})$  reducing to  $\tilde{Q}$ . Then  $\int_Q^{Q'} \omega = 0$  for any  $Q' \in X(\mathbb{Q})$  reducing to  $\tilde{Q}$ . As a function of Q',  $\int_Q^{Q'} \omega$  can be expressed as a power series I(t). The Lemma applied to I(t) shows that I(t) has at most m + 1 zeros, so there are at most m + 1 rational points Q' in the residue class.
- 2. By the Riemann-Roch theorem, the total number of zeros of  $\tilde{\omega}$  in  $X(\overline{\mathbb{F}}_p)$  is 2g 2. In particular,  $m \leq 2g 2 . Sum (1) over all <math>\tilde{Q} \in X(\mathbb{F}_p)$ .

## Computational effectiveness

- Can have  $r \ge g$ , which makes  $r' \le g$  unlikely.
- Could be computationally difficult to bound r, and hence r'.
- The zero set of the integral of  $\omega$  may be strictly larger than  $\overline{J(\mathbb{Q})}$ , even if one uses enough independent integrals.
- ► If the p-adic submanifolds X(Q<sub>p</sub>) and J(Q) in J(Q<sub>p</sub>) are tangent, it may be impossible to prove that they intersect.
- Even if # (X(Q<sub>p</sub>) ∩ J(Q)) is computed exactly, the true value of #X(Q) could be smaller; in other words, some of the intersection points could be irrational points in X(Q<sub>p</sub>).

Example:  $y^2 = x(x-1)(x-2)(x-5)(x-6)$ 

This curve has good reduction at p = 7, and

 $X(\mathbb{F}_7) = \{\infty, (0,0), (1,0), (2,0), (5,0), (6,0), (3,6), (3,-6)\}.$ 

A descent calculation by Gordon and Grant shows that J(Q) has rank 1. Coleman's theorem says #X(Q) ≤ 10.

 $X(\mathbb{Q}) = \{\infty, (0,0), (1,0), (2,0), (5,0), (6,0), (3,\pm 6), (10,\pm 120)\}.$ 

Example:  $y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$ Theorem (Flynn-Poonen-Schaefer)

$$X(\mathbb{Q}) = \{\infty^+, \infty^-, (0, \pm 1), (-3, \pm 1)\}.$$

Out of the box, Coleman's Theorem needs p = 5, which gives  $\#X(\mathbb{Q}) \leq 9$ . However X has good reduction at 3, and

$$X(\mathbb{F}_3) = \{\infty^+, \infty^-, (0, \pm 1)\}.$$

$$\tilde{\omega} = a \frac{dx}{y} + b \frac{x \, dx}{y}.$$

 $y = \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} \equiv 1 + x^2 + \cdots$ 

$$\tilde{\omega} = \frac{x \, dx}{y} = (x - x^3 + \cdots) dx$$

 $\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_3) + (2g-2) = 4 + (2 \cdot 2 - 2) = 6.$ 

## Calculating integrals explicitly

$$\int_{(0,1)}^{(-3,1)} \frac{dx}{y} = \int_0^{-3} (1+6x+5x^2+22x^3+22x^4+8x^5+x^6)^{-1/2} dx$$
$$= \int_0^{-3} (1-3x+11x^2-56x^3+\cdots) dx$$
$$= \left(x-3\frac{x^2}{2}+11\frac{x^3}{3}-56\frac{x^4}{4}+\cdots\right)\Big|_0^{-3}$$
$$= (-3)-\frac{3}{2}(-3)^2+\frac{11}{3}(-3)^3-\frac{56}{4}(-3)^4+\cdots$$
$$\equiv 2\cdot 3+3^4 \pmod{3^5}$$

and similarly

$$\int_{(0,1)}^{(-3,1)} \frac{x \, dx}{y} = \left(\frac{x^2}{2} - 3\frac{x^3}{3} + 11\frac{x^4}{4} - 56\frac{x^5}{5} + \cdots\right)\Big|_0^{-3}$$
$$\equiv 2 \cdot 3^2 + 2 \cdot 3^3 \pmod{3^3}.$$

# (Continued)

$$\omega = \epsilon \frac{dx}{y} + \frac{x \, dx}{y}, \quad \int_{(0,1)}^{(-3,1)} \omega = 0$$
  
(2 \cdot 3 + 3<sup>4</sup> + \dots)\epsilon + (2 \cdot 3<sup>2</sup> + 2 \cdot 3<sup>3</sup> + \dots) = 0,  
\epsilon \epsilon \epsilon 2 \cdot 3 + 3<sup>2</sup> + 2 \cdot 3<sup>3</sup> (mod 3<sup>4</sup>).

$$I(t) := \int_{(0,1)}^{Q_t} \omega, \quad Q_t := (t, (1+6t+5t^2+22t^3+22t^4+8t^5+t^6)^{1/2})$$
  
=  $\int_{(0,1)}^{Q_t} \left(\epsilon \frac{dx}{y} + \frac{x \, dx}{y}\right)$   
=  $\int_0^t (\epsilon + x)(1+6x+5x^2+22x^3+22x^4+8x^5+x^6)^{-1/2} \, dx$   
=  $\epsilon t + (-3\epsilon+1)\frac{t^2}{2} + (11\epsilon-3)\frac{t^3}{3} + \cdots$ 

Computing integrals between residue classes

- 1. Restrict from  $J(\mathbb{Q}_p)$ :
  - ▶ Inside each residue class of *J* there is torsion point *T*, which can be used to set the constant of integration since  $\int_0^T \omega_J = 0$ .
  - Can be chosen to be rational over  $\mathbb{Q}_p$  if it has order prime to p.
- 2. Set the constant directly on  $X(\mathbb{Q}_p)$  using Coleman's theory of *p*-adic integration and the idea of a Teichmüller point.
- 3. Ultimately we care only about the residue classes in  $J(\mathbb{Q}_p)$  containing a point of  $J(\mathbb{Q})$ . For each of these residue classes, we compute an explicit divisor representing a point in  $J(\mathbb{Q})$  in the residue class, and use it to set the constant of integration. This idea is due to Wetherell.

## Elliptic Chabauty

- Can replace  $X \hookrightarrow J$  by any morphism to an abelian variety  $X \to A$ .
- Factors through J → A; Chabauty's argument applies if rank A(Q) < dim A.</p>
- Special case: X<sub>k</sub> → E for an elliptic curve E over some finite extension k of Q
- We get a map from X to A := Res<sub>k/Q</sub> E, an abelian variety of dimension [k : Q] such that A(Q) ≃ E(k).
- ► Typically the induced map J → A will be surjective; in this case one needs rank E(k) < [k : Q] to apply Chabauty's argument.</p>

Example:  $y^2 = x^6 + x^2 + 1$  (Diophantus)

- J is isogenous over Q to a product of elliptic curves, each of rank 1, so r' = r = 2.
- Wetherell used descent to replace the problem with the problem for finite étale covers of higher genus to which the method could be applied.
- He succeeded in proving that

$$X(\mathbb{Q}) = \{(\pm 1/2, \pm 9/8), (0, \pm 1), \infty^+, \infty^-\}.$$

Coleman's theorem requires r' < g, but if r' < g - 1, then one can improve the bound. For instance, if p > 2g, one can prove

 $\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + 2r'.$ 

## Bad reduction

#### Theorem

Let X, p, r' be as in Chabauty's theorem, let  $\mathcal{X}$  over  $\mathbb{Z}_p$  be a minimal regular model for  $X_{\mathbb{Q}_p}$ , and let  $\mathcal{X}_s$  over  $\mathbb{F}_p$  be its special fiber.

Let ω be a nonzero 1-form in H<sup>0</sup>(X<sub>Q<sub>p</sub></sub>, Ω<sup>1</sup>) satisfying conditions (i)-(iii). Let C be a component of multiplicity 1 in X<sub>s</sub>, and define C<sup>smooth</sup> := C ∩ X<sup>smooth</sup>. Scale ω by a power of p so that it reduces to a nonzero 1-form ũ ∈ H<sup>0</sup>(C<sup>smooth</sup>, Ω<sup>1</sup>). Let Q̃ ∈ C<sup>smooth</sup>(𝔽<sub>p</sub>). Let m = ord<sub>Q̃</sub> ũ. If m

2. If p > 2g, then

$$\#X(\mathbb{Q}) \leq \#\mathcal{X}^{\text{smooth}}_{s}(\mathbb{F}_{p}) + (2g-2).$$