$\mathbf{I U}^{B}$

International

Coverings and Mordell-Weil Sieve

Michael Stoll
International University Bremen
(Jacobs University as of soon)

Banff, February 6, 2007

Local Obstruction

Let C / \mathbb{Q} be a smooth projective curve of genus $g \geq 2$.

Goal:

Determine $C(\mathbb{Q})$!

Sub-Goal 1:

Decide if $C(\mathbb{Q})=\emptyset!$

Sub-Goal 2:

If $C(\mathbb{Q}) \neq \emptyset$, find all the points (and prove that these are all)!

Easy Case for Sub-Goal 1:

$C(\mathbb{R})=\emptyset$ or $C\left(\mathbb{Q}_{p}\right)=\emptyset$ for some prime p.
This is equivalent to $C\left(\mathbb{A}_{\mathbb{Q}}\right)=\emptyset$.

Coverings

Let $\pi: D \rightarrow C$ be a finite étale, geometrically Galois covering (more precisely: a C-torsor under a finite \mathbb{Q}-group scheme G).

This covering has twists $\pi_{\xi}: D_{\xi} \rightarrow C$ for $\xi \in H^{1}(\mathbb{Q}, G)$.

More concretely, a twist $\pi_{\xi}: D_{\xi} \rightarrow C$ of $\pi: D \rightarrow C$ is another covering of C that over $\overline{\mathbb{Q}}$ is isomorphic to $\pi: D \rightarrow C$.

Example. Consider $C: y^{2}=g(x) h(x) \quad$ with deg g, deg h even.
Then
$D: u^{2}=g(x), v^{2}=h(x) \quad$ is a C-torsor under $\mathbb{Z} / 2 \mathbb{Z}$,
and the twists are $D_{d}: u^{2}=d g(x), v^{2}=d h(x), \quad d \in \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}$.

Every rational point on C lifts to one of the twists,
and there are only finitely many twists such that $D_{d}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all v.

Coverings

Let $\pi: D \rightarrow C$ be a finite étale, geometrically Galois covering (more precisely: a C-torsor under a finite \mathbb{Q}-group scheme G).

This covering has twists $\pi_{\xi}: D_{\xi} \rightarrow C$ for $\xi \in H^{1}(\mathbb{Q}, G)$.

More concretely, a twist $\pi_{\xi}: D_{\xi} \rightarrow C$ of $\pi: D \rightarrow C$ is another covering of C that over $\overline{\mathbb{Q}}$ is isomorphic to $\pi: D \rightarrow C$.

Example. Consider $C: y^{2}=g(x) h(x) \quad$ with deg g, deg h even.
Then
$D: u^{2}=g(x), v^{2}=h(x) \quad$ is a C-torsor under $\mathbb{Z} / 2 \mathbb{Z}$,
and the twists are $\quad D_{d}: u^{2}=d g(x), v^{2}=d h(x), \quad d \in \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}$.

Every rational point on C lifts to one of the twists, and there are only finitely many twists such that $D_{d}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all v.

Descent

More generally, we have the following result.

Theorem.

- $C(\mathbb{Q})=\cup_{\xi \in H^{1}(\mathbb{Q}, G)} \pi_{\xi}\left(D_{\xi}(\mathbb{Q})\right)$.
- $\operatorname{Sel}^{\pi}(C):=\left\{\xi \in H^{1}(\mathbb{Q}, G): D_{\xi}\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset\right\}$ is finite (and computable).
(Fermat, Chevalley-Weil, ...)

If we find $\operatorname{Sel}^{\pi}(C)=\emptyset$, then $C(\mathbb{Q})=\emptyset$.

Example

Consider the genus 2 curve

$$
C: y^{2}=-\left(x^{2}+x-1\right)\left(x^{4}+x^{3}+x^{2}+x+2\right)=f(x)
$$

C has points everywhere locally

$$
\left(f(0)=2, f(1)=-6, f(-2)=-3 \cdot 2^{2}, f(18) \in\left(\mathbb{Q}_{2}^{\times}\right)^{2}, f(4) \in\left(\mathbb{Q}_{3}^{\times}\right)^{2}\right)
$$

The relevant twists of the obvious $\mathbb{Z} / 2 \mathbb{Z}$-covering are

$$
d u^{2}=-x^{2}-x+1, \quad d v^{2}=x^{4}+x^{3}+x^{2}+x+2
$$

where d is one of $1,-1,19,-19$.
If $d<0$, the second equation has no solution in \mathbb{R};
if $d=1$ or 19 , the pair of equations has no solution over \mathbb{F}_{3}.

So the Selmer set is empty, and $C(\mathbb{Q})=\emptyset$.

First Conjectures

This should always work. More precisely:

Conjecture 1
If $C(\mathbb{Q})=\emptyset$, then there is a covering π of C such that $\operatorname{Sel}^{\pi}(C)=\emptyset$.

Conjecture 2

If $C(\mathbb{Q})=\emptyset$, then there is an abelian covering π of C such that $\operatorname{Sel}^{\pi}(C)=\emptyset$.
(A covering is abelian if its Galois group is abelian.)

Conjecture 2 is stronger than Conjecture 1.
The Section Conjecture implies Conjecture 1.
Poonen has a heuristic argument that supports Conjecture 2.

Abelian Coverings

By Geometric Class Field Theory, all (connected) abelian coverings "come from the Jacobian".

More precisely, let $V=\operatorname{Pic}_{C}^{1}$ be the principal homogeneous space for $J=\mathrm{Pic}_{C}^{0}$ that has a natural embedding $C \rightarrow V$.

Then every abelian covering $D \rightarrow C$ is covered by an n-covering for some $n \geq 1$.

An n-covering is obtained by pull-back from an n-covering of V; geometrically, this is just multiplication by $n: J \rightarrow J$.

Let $\operatorname{Sel}^{(n)}(C) \subset H^{1}(\mathbb{Q}, J[n])$ denote the corresponding Selmer set.

Conjecture 2: $C(\mathbb{Q})=\emptyset$ implies Sel ${ }^{(n)}(C)=\emptyset$ for some n.

Refinement

Consider local conditions on C, given by a closed and open subset $X \subset C\left(\mathbb{A}_{\mathbb{Q}}\right)$.
(Concretely: congruence conditions, connected components of $C(\mathbb{R})$.)

Then we can consider $\mathrm{Sel}^{\pi}(C ; X)$, the subset of $\mathrm{Sel}^{\pi}(C)$ consisting of twists that have adelic points whose image on C is in X.

Conjecture 1'.

For all X as above, if $C(\mathbb{Q}) \cap X=\emptyset$, then there is a covering π of C such that $\operatorname{Sel}^{\pi}(C ; X)=\emptyset$.

Conjecture 2'.
For all X as above, if $C(\mathbb{Q}) \cap X=\emptyset$, then there is some $n \geq 1$ such that $\operatorname{Sel}^{(n)}(C ; X)=\emptyset$.

Comments

- The Section Conjecture implies Conjecture 1', which is equivalent to Conjecture 1.
- Conjecture 2' implies Conjecture 1' and Conjecture 2.
- Evidence for Conjecture 2 in many examples (see my other talk).
- Conjecture 2' is true for $X_{0}(N), X_{1}(N), X(N)$, if genus is positive.
- "Abelian descent information" is equivalent to "Brauer group information".

Conjecture 2 implies that the Brauer-Manin obstruction is the only one against rational points.

- See my paper Finite descent obstructions...

Mordell-Weil Sieve 1

Now assume that we know generators of $J(\mathbb{Q})$ and that we fix a basepoint $O \in C(\mathbb{Q})$ (or a a rational divisor class of degree 1 on C).

Then we have the usual embedding $C \rightarrow J$.

We only need to consider n-coverings of C that are pull-backs of n-coverings of J that have rational points; they are of the form $J \rightarrow J, P \mapsto Q+n P$ for $Q \in J(\mathbb{Q})$.

We are then interested in the rational points on C that map into a given coset $Q+n J(\mathbb{Q})$.

Mordell-Weil Sieve 2

Let S be a finite set of primes of good reduction.
Consider the following diagram.

We can compute the maps α and β.
If their images do not intersect, then $C(\mathbb{Q})=\emptyset$.

Poonen Heuristic:

If $C(\mathbb{Q})=\emptyset$, then this will be the case when n and S are sufficiently large.

Mordell-Weil Sieve 3

We can also bring in a local condition.
This is equivalent with requiring $P \in C(\mathbb{Q})$ to be mapped to certain cosets in $J(\mathbb{Q}) / N J(\mathbb{Q})$, for some N.

We can then use the procedure above with n a multiple of N and restricting to these cosets.

Conjecture 2".
Let $Q \in J(\mathbb{Q})$. If no $P \in C(\mathbb{Q})$ maps into $Q+N J(\mathbb{Q})$,
then the procedure will prove that (for S and $n \in N \mathbb{Z}$ large enough).
Conjecture 2" is slightly stronger than Conjecture 2'.

Consequence:

If C satisfies Conjecture 2" and $N \geq 1$,
then we can decide whether $Q+N J(\mathbb{Q})$ contains a point from C.

Effective Mordell?

Given $O \in C(\mathbb{Q})$ and generators of $J(\mathbb{Q})$, here is a tentative procedure.

1. Find $N \geq 1$ such that $C(\mathbb{Q}) \rightarrow J(\mathbb{Q}) / N J(\mathbb{Q})$ is injective (Minhyong).
2. For each coset, decide if it is in the image (Mordell-Weil sieve).

We can attempt the second step, and if Conjecture 2 " is satisfied, we will be successful. (Otherwise, the procedure will not terminate.)

Question.

Is there an N for step 1 that only depends on the genus?

Chabauty

In the Chabauty situation, the first step can be done as follows.

Let $\omega \in \Omega_{C}\left(\mathbb{Q}_{p}\right)$ be a differential killing $J(\mathbb{Q})$.
If the reduction $\bar{\omega}$ does not vanish on $C\left(\mathbb{F}_{p}\right)$ and $p>2$, then each residue class contains at most one rational point.

This implies that $C(\mathbb{Q}) \rightarrow J(\mathbb{Q}) / N J(\mathbb{Q})$ is injective, where $N=\# J\left(\mathbb{F}_{p}\right)$.

Heuristically, the set of primes p satisfying this condition should have positive density (at least when J is simple).

In practice, this works very well for $g=2$ and $r=1$.

