

Coverings and Mordell-Weil Sieve

Michael Stoll International University Bremen (Jacobs University as of soon)

Banff, February 6, 2007

Local Obstruction

Let C/\mathbb{Q} be a smooth projective curve of genus $g \geq 2$.

Goal: Determine $C(\mathbb{Q})!$

Sub-Goal 1: Decide if $C(\mathbb{Q}) = \emptyset$!

Sub-Goal 2: If $C(\mathbb{Q}) \neq \emptyset$, find all the points (and prove that these are all)!

Easy Case for Sub-Goal 1:

 $C(\mathbb{R}) = \emptyset$ or $C(\mathbb{Q}_p) = \emptyset$ for some prime p. This is equivalent to $C(\mathbb{A}_{\mathbb{Q}}) = \emptyset$.

Coverings

Let $\pi : D \to C$ be a finite étale, geometrically Galois covering (more precisely: a *C*-torsor under a finite \mathbb{Q} -group scheme *G*).

This covering has twists $\pi_{\xi} : D_{\xi} \to C$ for $\xi \in H^1(\mathbb{Q}, G)$.

More concretely, a twist $\pi_{\xi} : D_{\xi} \to C$ of $\pi : D \to C$ is another covering of C that over $\overline{\mathbb{Q}}$ is isomorphic to $\pi : D \to C$.

Example. Consider $C: y^2 = g(x)h(x)$ with deg g, deg h even. Then $D: u^2 = g(x), v^2 = h(x)$ is a C-torsor under $\mathbb{Z}/2\mathbb{Z}$, and the twists are $D_d: u^2 = dg(x), v^2 = dh(x), \quad d \in \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$.

Every rational point on C lifts to one of the twists, and there are only finitely many twists such that $D_d(\mathbb{Q}_v) \neq \emptyset$ for all v.

Coverings

Let $\pi : D \to C$ be a finite étale, geometrically Galois covering (more precisely: a *C*-torsor under a finite \mathbb{Q} -group scheme *G*).

This covering has twists $\pi_{\xi} : D_{\xi} \to C$ for $\xi \in H^1(\mathbb{Q}, G)$.

More concretely, a twist $\pi_{\xi} : D_{\xi} \to C$ of $\pi : D \to C$ is another covering of C that over $\overline{\mathbb{Q}}$ is isomorphic to $\pi : D \to C$.

Example. Consider $C: y^2 = g(x)h(x)$ with deg g, deg h even. Then $D: u^2 = g(x), v^2 = h(x)$ is a C-torsor under $\mathbb{Z}/2\mathbb{Z}$, and the twists are $D_d: u^2 = dg(x), v^2 = dh(x), d \in \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$.

Every rational point on C lifts to one of the twists, and there are only finitely many twists such that $D_d(\mathbb{Q}_v) \neq \emptyset$ for all v.

Descent

More generally, we have the following result.

Theorem.

- $C(\mathbb{Q}) = \bigcup_{\xi \in H^1(\mathbb{Q},G)} \pi_{\xi}(D_{\xi}(\mathbb{Q})).$
- $\operatorname{Sel}^{\pi}(C) := \{\xi \in H^1(\mathbb{Q}, G) : D_{\xi}(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset\}$ is finite (and computable).

(Fermat, Chevalley-Weil, ...)

If we find $\operatorname{Sel}^{\pi}(C) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

Example

Consider the genus 2 curve

$$C: y^{2} = -(x^{2} + x - 1)(x^{4} + x^{3} + x^{2} + x + 2) = f(x).$$

C has points everywhere locally $(f(0) = 2, f(1) = -6, f(-2) = -3 \cdot 2^2, f(18) \in (\mathbb{Q}_2^{\times})^2, f(4) \in (\mathbb{Q}_3^{\times})^2).$

The relevant twists of the obvious $\mathbb{Z}/2\mathbb{Z}$ -covering are

$$du^2 = -x^2 - x + 1$$
, $dv^2 = x^4 + x^3 + x^2 + x + 2$

where *d* is one of 1, -1, 19, -19.

If d < 0, the second equation has no solution in \mathbb{R} ; if d = 1 or 19, the pair of equations has no solution over \mathbb{F}_3 .

So the Selmer set is empty, and $C(\mathbb{Q}) = \emptyset$.

First Conjectures

This should always work. More precisely:

Conjecture 1 If $C(\mathbb{Q}) = \emptyset$, then there is a covering π of C such that $Sel^{\pi}(C) = \emptyset$.

Conjecture 2 If $C(\mathbb{Q}) = \emptyset$, then there is an abelian covering π of C such that $Sel^{\pi}(C) = \emptyset$.

(A covering is abelian if its Galois group is abelian.)

Conjecture 2 is stronger than Conjecture 1. The Section Conjecture implies Conjecture 1. Poonen has a heuristic argument that supports Conjecture 2.

Abelian Coverings

By Geometric Class Field Theory, all (connected) abelian coverings "come from the Jacobian".

More precisely, let $V = \operatorname{Pic}_{C}^{1}$ be the principal homogeneous space for $J = \operatorname{Pic}_{C}^{0}$ that has a natural embedding $C \to V$.

Then every abelian covering $D \rightarrow C$ is covered by an *n*-covering for some $n \ge 1$.

An *n*-covering is obtained by pull-back from an *n*-covering of V; geometrically, this is just multiplication by $n: J \rightarrow J$.

Let $\operatorname{Sel}^{(n)}(C) \subset H^1(\mathbb{Q}, J[n])$ denote the corresponding Selmer set.

Conjecture 2: $C(\mathbb{Q}) = \emptyset$ implies $Sel^{(n)}(C) = \emptyset$ for some *n*.

Refinement

```
Consider local conditions on C,
given by a closed and open subset X \subset C(\mathbb{A}_{\mathbb{Q}}).
(Concretely: congruence conditions, connected components of C(\mathbb{R}).)
```

Then we can consider $Sel^{\pi}(C; X)$, the subset of $Sel^{\pi}(C)$ consisting of twists that have adelic points whose image on C is in X.

Conjecture 1'.

For all X as above, if $C(\mathbb{Q}) \cap X = \emptyset$, then there is a covering π of C such that $Sel^{\pi}(C; X) = \emptyset$.

Conjecture 2'.

For all X as above, if $C(\mathbb{Q}) \cap X = \emptyset$, then there is some $n \ge 1$ such that $Sel^{(n)}(C; X) = \emptyset$.

Comments

- The Section Conjecture implies Conjecture 1', which is equivalent to Conjecture 1.
- Conjecture 2' implies Conjecture 1' and Conjecture 2.
- Evidence for Conjecture 2 in many examples (see my other talk).
- Conjecture 2' is true for $X_0(N)$, $X_1(N)$, X(N), if genus is positive.
- "Abelian descent information" is equivalent to "Brauer group information".

Conjecture 2 implies that the Brauer-Manin obstruction is the only one against rational points.

• See my paper Finite descent obstructions . . .

Mordell-Weil Sieve 1

Now assume that we know generators of $J(\mathbb{Q})$ and that we fix a basepoint $O \in C(\mathbb{Q})$ (or a a rational divisor class of degree 1 on C).

Then we have the usual embedding $C \rightarrow J$.

We only need to consider *n*-coverings of Cthat are pull-backs of *n*-coverings of J that have rational points; they are of the form $J \to J$, $P \mapsto Q + nP$ for $Q \in J(\mathbb{Q})$.

We are then interested in the rational points on C that map into a given coset $Q + nJ(\mathbb{Q})$.

Mordell-Weil Sieve 2

Let S be a finite set of primes of good reduction. Consider the following diagram.

We can compute the maps α and β . If their images do not intersect, then $C(\mathbb{Q}) = \emptyset$.

Poonen Heuristic:

If $C(\mathbb{Q}) = \emptyset$, then this will be the case when n and S are sufficiently large.

Mordell-Weil Sieve 3

We can also bring in a local condition. This is equivalent with requiring $P \in C(\mathbb{Q})$ to be mapped to certain cosets in $J(\mathbb{Q})/NJ(\mathbb{Q})$, for some N.

We can then use the procedure above with n a multiple of N and restricting to these cosets.

Conjecture 2".

```
Let Q \in J(\mathbb{Q}). If no P \in C(\mathbb{Q}) maps into Q + NJ(\mathbb{Q}),
then the procedure will prove that (for S and n \in N\mathbb{Z} large enough).
```

Conjecture 2" is slightly stronger than Conjecture 2'.

Consequence:

If C satisfies Conjecture 2" and $N \ge 1$, then we can decide whether $Q + NJ(\mathbb{Q})$ contains a point from C.

Effective Mordell?

Given $O \in C(\mathbb{Q})$ and generators of $J(\mathbb{Q})$, here is a tentative procedure.

- 1. Find $N \geq 1$ such that $C(\mathbb{Q}) \to J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective (Minhyong).
- 2. For each coset, decide if it is in the image (Mordell-Weil sieve).

We can attempt the second step, and if Conjecture 2" is satisfied, we will be successful. (Otherwise, the procedure will not terminate.)

Question.

Is there an N for step 1 that only depends on the genus?

Chabauty

In the Chabauty situation, the first step can be done as follows.

Let $\omega \in \Omega_C(\mathbb{Q}_p)$ be a differential killing $J(\mathbb{Q})$. If the reduction $\overline{\omega}$ does not vanish on $C(\mathbb{F}_p)$ and p > 2, then each residue class contains at most one rational point.

This implies that $C(\mathbb{Q}) \to J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective, where $N = \#J(\mathbb{F}_p)$.

Heuristically, the set of primes p satisfying this condition should have positive density (at least when J is simple).

In practice, this works very well for g = 2 and r = 1.