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Abstract. It is well-known that not all varieties over Q satisfy the Hasse principle. The
famous Selmer curve given by 3x3 +4y3 +5z3 = 0 in P2, for instance, indeed has points over
every completion of Q, but no points over Q itself. Though it is trivial to find points over
some cubic field, it is a priori not obvious whether there are points over a cubic field that is
galois. We will see that such points do exist. K3 surfaces do not satisfy the Hasse principle
either, which in some cases can be explained by the so-called Brauer-Manin obstruction. It
is not known whether this obstruction is the only obstruction to the existence of rational
points on K3 surfaces. We relate the two problems by sketching a proof of the following fact.
If there exists a smooth curve over Q given by ax3 + by3 + cz3 = 0 that is locally solvable
everywhere, that has no points over any cubic galois extension of Q, and whose Jacobian has
trivial Mordell-Weil group, then the algebraic part of the Brauer-Manin obstruction is not
the only one for K3 surfaces. No knowledge about K3 surfaces or Brauer-Manin obstructions
will be assumed as known.

1. Obstructions to the existence of rational points

1.1. Hasse principle. The Hasse principle states for a variety X that if X(Qp) is nonempty
for all p ≤ ∞, then X(Q) is nonempty. It is true for conics, not always true for cubics, e.g.,
C : 3x3 + 4y3 + 5z3 = 0. The intersection of this curve with L : 711x + 172y + 785z = 0
contains points over `/Q where ` is a Galois degree-3 extension of Q.

1.2. Brauer-Manin obstruction. Let X be a smooth projective variety over a number
field k. If A ∈ Br X := H2

et(X, Gm), we get

X(k)

fA

��

//
∏

v X(kv) = X(Ak)

�� φ ''PPPPPPPPPPPPP

Br k //
⊕

v Br kv
// Q/Z // 0

Define X(Ak)
A = φ−1(0), so X(k) ⊆ X(Ak)

A. If X(Ak) 6= ∅ but
⋂

A∈Br X X(Ak)
A = ∅, then

one says that there exists a Brauer-Manin obstruction to the Hasse principle for X.

Theorem 1.1. Suppose there is a cubic C : ax3 + by3 + cz3 = 0 in P2
Q with a, b, c 6= 0 such

that

(1) C has points over every completion of Q.
(2) There does not exist a degree-3 Galois extension `/Q with C(`) 6= ∅.

Then there exists a K3 surface Y over Q with rk Pic Y = 20 such that for Br1 Y :=
ker

(
Br Y → Br Y

)
we have

⋂
A∈Br1 Y Y (AQ)A 6= ∅ and Y (Q) = ∅.
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We have
C × C ' {(P, Q,R) ∈ C × C × C : P + Q + R collinear}

where collinear means that P + Q + R is linearly equivalent to a line section. The order-3
automorphism ρ : (P, Q,R) 7→ (Q,R, P ) of the right hand side corresponds to an automor-
phism ρ : (P, Q) 7→ (Q,R) of C × C where R is the unique point of C such that P + Q + R
is linearly equivalent to a line section.

Let X = C × C/ρ and let Y be the minimal nonsingular model of X.

Theorem 1.2. Let k be a number field. Let C be ax3 + by3 + cz3 = 0 in P2
k, and define X

and Y as above.

(a) If C(Ak) 6= ∅, then Y (Ak) 6= ∅.
(b) If there is no Galois degree-3 extension ` of k with C(`) 6= ∅, then Y (k) = ∅.
(c) If C(Ak) 6= ∅ and 3 - h(k) and Br1 Y

Br k
6= 0, then there exists u ∈ O×

k such that
C ' x3 + uy3 + u2z3 = 0 over k.

Corollary 1.3. Suppose C(Ak) 6= ∅ and there does not exists a Galois degree-3 extension
`/k with C(`) 6= ∅ and 3 - h(k) and for all u,

Cu : x3 + uy3 + u2z3 = 0

does not satisfy Cu(Ak) 6= ∅ or the condition that there does not exist a Galois degree-3
extension `/k with Cu(`) 6= ∅. Then we have ∩A∈Br1 Y Y (Ak)

A 6= ∅, but Y (k) = ∅.
(a) Suppose P ∈ C(kv), then (P, P ) ∈ C×C maps to some R ∈ X(kv). There is a diagram

C × C

3 ##GG
GG

GG
GG

G
6 // P̌2

X

2

>>~~~~~~~~

where the horizontal map sends (P, Q) to the line through P and Q. The map X → P̌2 is
ramified over Č.

The affine curve ax3 + by3 + c = 0 has a flex at (0,−α) where α = 3
√

c/b, and the tangent

there is y + αz = 0, which corresponds to [0 : 1 : α] ∈ P̌2. The dual curve Č has 9 cusps.
The singular points of X locally look like y2 +x3 = z2. Blowing up once gives two P1’s above
each, and their intersection will be a rational point if the singular point of X is rational.

Suppose Q ∈ Y maps to R on XC . Then R corresponds to a Galois-invariant orbit
(P, P ′, P ′′) under ρ, so P is defined over some `/k that is Galois of degree-3.

Poonen: The converse to (b) holds if 3J(k) = J(k), where J = Jac C.
(c) Br1 Y

Br k
' H1(k, Pic Y ). The 18 P1’s in Y lying above the 9 singular points of X give

elements of Pic Y . Let r, s, t be the coordinates of P̌2. The strict transform D of σ∗Lr=0 on
Y , where σ is the map X → P̌2, is reducible since its self-intersection is −4, while irreducible
D would have D2 ≥ −2. Similarly the pullback of σ∗Ls=0 and σ∗Lt=0 are irreducible, as well
as the strict transforms of 9 more quadrics going through 6 cusps. These components give
further elements of Pic Y , and together all these generate it. It follows that Pic Y is defined
over k(ζ, α, β) where β = 3

√
a/c. Let γ = α−1β−1. The Galois group of k(ζ, α, β) over k is a

subgroup of (Z/3Z× Z/3Z) o Z/2Z.
Fact (based on checking all subgroups with Magma): H1(H, Pic Y ) 6= 0 implies that

α/γ ∈ k, which is equivalent to ac/b2 ∈ k3. In this case, C is isomorphic to x3+by3+b2z3 = 0.
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Local solvability implies that b has all valuations divisible by 3, and with 3 - h(k), this implies
that b is a unit times a cube.
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