Visualising III[2] in Abelian surfaces

Nils Bruin (PIMS, SFU, UBC)

π

The

Pacific
Institute
for the Mathematical Sciences

Setting

- K is a number field.
- Elliptic Curve $E: y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=F(x)$ with $F(x) \in K[x]$.
- Rational points $E(K)$ form a finitely generated commutative group.
- $E(K) \simeq \mathbb{Z}^{r} \oplus E(K)^{\text {tor }}$. Torsion $E(K)^{\text {tor }}$ is finite. The rank of $E(K)$ is r.
- The group $E(K)^{\text {tor }}$ can effectively and practically be determined.
- $E(K) / 2 E(K) \simeq E[2](K) \oplus(\mathbb{Z} / 2 \mathbb{Z})^{r}$, where $E[2](K) \subset E(K)^{\mathrm{tor}}$.
- We focus on determining $E(K) / 2 E(K)$.

The Selmer group

From

$$
0 \rightarrow E[2] \rightarrow E \xrightarrow{2} E \rightarrow 0
$$

we obtain

$$
0 \mapsto E(K) / 2 E(K) \rightarrow H^{1}(K, E[2]) \rightarrow H^{1}(K, E)[2] .
$$

The set $H^{1}(K, E[2])$ is represented by the twists of $E \xrightarrow{2} E$:
That is: Covers $T \rightarrow E$ that are isomorphic to $E \xrightarrow{2} E$ over \bar{K}.
The image $E(K) / 2 E(K)$ in $H^{1}(K, E[2])$ are those T with $T(K) \neq \varnothing$.
By: $P \in E(K) \mapsto$ the twist of T with a rational point above P.
An approximation is the 2-Selmer-group:

$$
S^{(2)}(E / K):=\left\{T \in H^{1}(K, E[2]): T\left(K_{p}\right) \neq \varnothing \text { for all primes } p \text { of } K\right\} .
$$

The Tate-Shafarevich group

By definition,

$$
0 \rightarrow E(K) / 2 E(K) \rightarrow S^{(2)}(E / K) \rightarrow \amalg(E / K)[2] \rightarrow 0 .
$$

The group $\amalg(E / K)[2]$ is conjectured to be a square.
In practice it is often (but not always!) trivial.
A 2-descent determines $S^{(2)}(E / K)$. Gives upper bound on $\mathrm{rk}(E(K))$.
Finding points on $E(K)$ gives lower bound on rank.
Need a way to get good lower bounds on \#Ш($E / K)[2]$.
Strategy: Force a point on $T \in H^{1}(K, E[2])$ (by base extension). Try and see if anything changed.

Subcovers

E is a double cover of \mathbb{P}^{1} by $(x, y) \mapsto x$. It is ramified above $F(x)=0$ and ∞.
$T \rightarrow E$ is unramified and $\operatorname{Aut}_{\bar{K}}(T / E)=E[2](\bar{K}) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
$\operatorname{Aut}_{\bar{K}}\left(T / \mathbb{P}^{1}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Let L be the maximal subcover of $T \rightarrow \mathbb{P}^{1}$ unramified at ∞.
Then $T=E \times_{\mathbb{P}^{1}} L$.

L is of genus 0 . By Hasse's principle, if $T \in S^{(2)}(E / K)$, then $L(K) \neq \varnothing$.

Twisting III[2] away

(Example with 2-torsion over \mathbb{Q} in Kenneth Kramer, Arithmetic of elliptic curves upon quadratic extension, TAMS 1981)

Let $Q \in L(K)$ with image $x_{Q} \in \mathbb{P}^{1}(K)$.
Take d such that $F\left(x_{Q}\right)=d \cdot \square$.

$$
E^{(d)}: d y^{2}=F(x) \text { and } T^{(d)}=E^{(d)} \times_{\mathbb{P}^{1}} L .
$$

The curve $E^{(d)}$ has a rational point above x_{Q}. So has $T^{(d)}$.
Over $K(\sqrt{d})$, we have $E \simeq E^{(d)}$ and $T \simeq T^{(d)}$.
We know $\operatorname{rk}(E(K(\sqrt{d})))=\operatorname{rk}(E(K))+\mathrm{rk}\left(E^{(d)}(K)\right)$.
We hope $\operatorname{rk}\left(S^{(2)}(E / K(\sqrt{d}))\right)<\operatorname{rk}\left(S^{(2)}(E / K)\right)+\operatorname{rk}\left(S^{(2)}\left(E^{(d)} / K\right)\right)$.

An example

Take $K=\mathbb{Q}$ and consider the curve (from Schaefer, Stoll):

$$
E: y^{2}=x^{3}-22 x^{2}+21 x+1 .
$$

It has rank at least $2:(0,1),(1,1) \in E(\mathbb{Q})$
$(0,1)+(1,1)=(21,-1)$ and $(0,1)-(1,1)=(25,49)$.
We compute

$$
S^{(2)}(E / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{4}
$$

We suspect

$$
\amalg(E / \mathbb{Q})[2]=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

Information on $S^{(2)}(E / \mathbb{Q})$

We write $T^{[\mathrm{nr]}]}$ for elements of $S^{(2)}(E / \mathbb{Q})$ and $L^{[\mathrm{nr]}]}$ for the curve below it.

nr	some x-coordinates of points on $L^{[\mathrm{nr]}]}$	corresponding d s
0	∞	1
1	$9 / 10,13 / 17$	10,17
2	1	1
3	$-4 / 3,-1 / 20$	$-3,-5$
4	$1 / 2$	2
5	$-1 / 4,-16 / 23$	$-1,-23$
6	$-25 / 4,-9 / 8,-4 / 11,-16 / 15$	$-1,-2,-11,-15$
7	$1 / 6,1 / 17$	6,17
8	$-1 / 7,-1 / 14$	$-7,-14$
9	$1 / 4,1 / 8,4 / 13$	$313,2,13$
10	$1 / 12,12 / 13$	3,13
11	$-1 / 2,-1 / 6$	$-2,-4038$
12	0	1
13	$-9 / 2,-1 / 15,-13 / 23$	$-2,-15,-23$
14	$21,25,-1 / 18,-1 / 22$	$1,1,-2,-2$
15	$4 / 5,25 / 24$	5,6

Rank information

d	x-coords ${ }^{[\mathrm{nr}]}$	$\operatorname{rk}\left(E^{(d)}\right)$	$\operatorname{rk}(E(K(\sqrt{d})))$
-4038	$-1 / 6^{[11]}$	2	4
-23	$-16 / 23^{[5]},-13 / 23^{[13]}$	2	4
-22	$-1 / 22^{[14]}$	2	6
-15	$-16 / 15^{[6]},-1 / 15^{[13]}$	3	5
-14	$-1 / 14^{[8]}$	2	4
-11	$-4 / 11^{[6]}$	1	5
-7	$-1 / 7^{[8]}$	2	4
-5	$-1 / 20^{[3]}$	2	4
-3	$-4 / 3^{[3]}$		
-2	$-9 / 2^{[13]},-9 / 8^{[6]},-1 / 2^{[11]},-1 / 18^{[14]}$	2	4
-1	$-25 / 4^{[6]},-1 / 4^{[5]}$	5	
1	$0^{[12]}, 1^{[2]}, 21^{[14]}, 25^{[14]}$	2	4
2	$1 / 8^{[9]}, 1 / 2^{[4]}$.	.
3	$1 / 12^{[10]}$	$2 . .4$	4
5	$4 / 5^{[15]}$	$1 . .3$	5
6	$1 / 6^{[7]}, 25 / 24^{[15]}$	$1 . .3$	5
10	$9 / 10^{[1]}$	$2 . .4$	4
13	$4 / 13^{[9]}, 12 / 13^{[10]}$	$2 . .4$	4
17	$1 / 17^{[7]}, 13 / 17^{[1]}$	3	5
313	$1 / 4^{[9]}$	$2 . .4$	4

Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.
Put $A=\Re_{K(\sqrt{d}) / K}(E)$. We have $0 \rightarrow E \rightarrow A \rightarrow E^{(d)} \rightarrow 0$.
Note that $E[2]$ and $E^{(d)}[2]$ are isomorphic.

Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.
Put $A=\Re_{K(\sqrt{d}) / K}(E)$. We have $0 \rightarrow E \rightarrow A \rightarrow E^{(d)} \rightarrow 0$.
Note that $E[2]$ and $E^{(d)}[2]$ are isomorphic.

$$
\begin{gathered}
\nmid \\
E^{0}(K) / 2 E(K) \\
\vdots \\
E^{(d)}(K) \longrightarrow H^{1}(K, E[2]) \rightarrow H^{1}\left(K, E^{(d)}\right) \\
\downarrow \\
H^{1}(K, E)
\end{gathered}
$$

Visualisation of III[2]

Idea from Cremona, Mazur. Studied in Modular setting by William Stein.
Put $A=\Re_{K(\sqrt{d}) / K}(E)$. We have $0 \rightarrow E \rightarrow A \rightarrow E^{(d)} \rightarrow 0$.
Note that $E[2]$ and $E^{(d)}[2]$ are isomorphic.

The map $E^{(d)}(K) \rightarrow H^{1}(K, E)$ sends $P \in E^{(d)}(K)$ to the fiber of A over P.

A more general construction

We don't need $A=\Re_{K(\sqrt{d}) / K}(E)$.
Take E_{1}, E_{2} with $E_{1}[2] \simeq E_{2}[2]$. We construct A isogenous to $E_{1} \times E_{2}$.

$$
\begin{gathered}
E_{1}: y^{2}=F(x)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
L_{0}: y^{2}=d(x-a) \quad C=E_{1} \times_{\mathbb{P}^{1}} L_{0}: z^{2}=F\left(\frac{y^{2}}{d}+a\right) \\
E_{2}: y^{2}=d(x-a) F(x)
\end{gathered}
$$

Solve a and d so that E_{2} visualises 2 elements of $S^{(2)}\left(E_{1} / K\right)$ in Jac_{C}.

Example of bi-elliptic construction

Consider (again) $E_{1}: y^{2}=x^{3}-22 x^{2}+21 x+1=F(x)$ over \mathbb{Q}.
Take $x_{1}=9 / 10^{[1]}$ and $x_{2}=1 / 2^{[4]}$.
Take a and d so that $d\left(x_{1}-a\right) F\left(x_{1}\right)=\square$ and $d\left(x_{2}-a\right) F\left(x_{2}\right)=\square$:

$$
\begin{gathered}
a=1, d=-1 \\
C: z^{2}=F\left(-y^{2}+1\right)=-y^{6}-19 y^{4}+20 y^{2}+1, \quad E_{2}: y^{2}=-(x+1) F(x)
\end{gathered}
$$

We find

$$
\operatorname{rk}\left(\operatorname{Jac}_{C}(\mathbb{Q})\right) \leq 5, \quad \operatorname{rk}\left(E_{2}(\mathbb{Q})\right)=3
$$

Since Jac_{C} is isogenous to $E_{1} \times E_{2}$:

$$
\operatorname{rk}\left(E_{1}(\mathbb{Q})\right)=\operatorname{rk}\left(\operatorname{Jac}_{C}(\mathbb{Q})\right)-\operatorname{rk}\left(E_{2}(\mathbb{Q})\right)
$$

Again, we find $\operatorname{rk}\left(E_{1}(\mathbb{Q})\right)=2$ and $\operatorname{III}\left(E_{1} / \mathbb{Q}\right)[2]=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

