On page 46 , the resultant of ϕ_{3} should be $2^{5} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13^{2}$.
On page 51, the table of results should be

Search space	640000000
Orbits with a 9-th integer point	44536
Orbits belonging to minimal maps	7631
Orbits corresponding to non-degree 3 maps	3
Degree 3 polynomial orbits	0
Degree 3, preperiodic orbits	913
Degree 3 non-preperiodic, orbits with at least 9 integer points in the orbit of 0	6508

On page 52, the table of results should be

Minimal orbits with an integer before 0	25
Minimal orbits with a 10-th integer point	28
Number of orbits in both cases that are $\mathrm{PGL}_{2}(\mathbb{Q})$ conjugates	11
Number of minimal orbits with 10 integer points in the orbit of 0	42

On page 60, the following orbits should not be included in the list. They are not minimal.

- $[0,1,-2,-5,4,-4,2,-3,-8,187]$
- $[0,2,-1,-10,5,-2,-7,8,-4,-33]$
- $[0,3,-1,2,9,4,5,8,11,-8]$
- $[0,3,4,1,6,-8,-7,-2,28,-195]$
- $[0,6,-2,-6,-4,-9,-3,1,3,5]$
- $[0,9,3,-6,-1,4,-3,1,39,-56]$

On page 61 , the following orbits should not be included in the list. They are not minimal.

- $[0,6,1,8,2,14,-1,5,11,149]$
- $[0,11,3,15,21,6,12,9,16,275]$
- $[0,12,18,4,6,3,9,11,15,-33]$
- $[0,14,7,21,18,15,9,12,6,63]$
- $[0,20,18,15,12,30,21,27,22,33]$
- $[0,24,27,18,30,20,21,25,19,62]$
- $[0,24,33,23,27,15,18,22,25,-361]$
- $[0,28,30,33,36,18,27,21,26,15]$

