Prym varieties of curves of genus 3

Nils Bruin (University of Sydney)

Overview

- Non-hyperelliptic curves of genus 3 and their unramified double covers
- Some special divisors on curves of genus 5
- Prym varieties for genus 3
- Embedding a double cover in its Prym
- Application: Avoiding Chabauty on a curve of genus 3
- Application: Violation of the Hasse-principle in genus 3 and 5
- A word of warning: Don't believe small numbers

Curves of genus 3

Notation: Let K be a number field

Non-hyperelliptic curve of genus 3: Smooth plane quartic

Special form: Quadratic in quadratics in \mathbb{P}^2

$$C: Q_0(Q_1(u, v, w), Q_2(u, v, w), Q_3(u, v, w)) = 0$$

where $Q_1,Q_2,Q_3\in K[u,v,w]$ are quadratic forms and $Q_0\in K[q_1,q_2,q_3]$ is too.

Further reduction: If $Q_0(q_1, q_2, q_3) = 0$ has no solutions, then $C(K) = \emptyset$.

If it has, then (up to linear transformation) $Q_0=q_1q_3-q_2^2$.

We limit attention to curves of the form

$$C: Q_1(u, v, w)Q_3(u, v, w) = Q_2(u, v, w)^2$$

Note: Any smooth plane quartic can be written in this form over an extension of K.

Unramified double covers

Given a genus 3 curve

$$C: Q_1(u, v, w)Q_3(u, v, w) = Q_2(u, v, w)^2$$

Consider the following projective curve in \mathbb{P}^4

$$D_{\delta}: \begin{cases} Q_1(u, v, w) = \delta r^2 \\ Q_2(u, v, w) = \delta rs \\ Q_3(u, v, w) = \delta s^2 \end{cases}$$

and the unramified double cover:

$$\pi: D \to C$$

$$(u:v:w:r:s) \mapsto (u:v:w).$$

with the obvious $\sigma \in \operatorname{Aut}(D/C)$ defined by

$$\sigma: (u:v:w:r:s) \mapsto (u:v:w:-r:-s).$$

The curve D_{δ} is smooth and of genus 5.

The given model is canonical.

Covering collection (J.L. Wetherell)

Obviously,

$$\pi(D_{\delta}(K)) \subset C(K)$$
.

Conversely, there is a finite subset $\Delta \subset K^*$ such that

$$\bigcup_{\delta \in \Delta} \pi(D_{\delta}(K)) = C(K)$$

Sketch: For $K = \mathbb{Q}$:

- assume $Q_1, Q_2, Q_3 \in \mathbb{Z}[u, v, w]$
- if $P=(u_P:v_P:w_P)\in\mathbb{P}^2(\mathbb{Q})$ such that $Q_1(P)Q_3(P)=Q_2(P)^2$, WLOG: $u_P,v_P,w_P\in\mathbb{Z}$ and $\gcd(u_P,v_P,w_P)=1$
- it follows

$$gcd(Q_1(P), Q_2(P), Q_3(P)) \mid R = res_u(res_v(Q_1, Q_2), res_v(Q_1, Q_3))$$

 \bullet Hence, if $Q_1(P)=\delta r_P^2$, $Q_3(P)=\delta s_P^2$, then

$$\delta \mid R$$

Description of the Jacobian of a curve of genus 2 (Cassels-Flynn)

Consider:

$$F: y^2 = f_0 + f_1 x + f_2 x^2 + \dots + f_6 x^6$$

Canonical divisor class:

$$[\kappa_F] = [(x_0, y_0) + (x_0, -y_0)]$$

General point of $\operatorname{Jac}_F(\overline{K})$:

$$\mathfrak{g} = [(x_1, y_1) + (x_2, y_2) - \kappa_F], \text{ where } (x_1, y_1), (x_2, y_2) \in F(\overline{K}).$$

Kummer surface: $\operatorname{Kum}_F := \operatorname{Jac}_F/\langle -1 \rangle$

$$k(\mathfrak{g}) = (k_1 : k_2 : k_3 : k_4) = (1 : x_1 + x_2 : x_1 x_2 : \ldots)$$

Equation of Kum_F as a variety over K:

$$\operatorname{Kum}_F: (k_2^2 - 4k_1k_3) k_4^2 + (\ldots) k_4 + (\ldots) = 0$$

Embedding *D* in an abelian surface

Notation: We write Q_i for

- The quadratic form $Q_i \in K[u, v, w]$
- The symmetric matrix $Q_i \in K^{3\times 3}$.

A curve of genus 2:

$$F_{\delta}: y^2 = -\delta \det(Q_1 + 2xQ_2 + x^2Q_3)$$

Main tool:

$$D_{\delta} \hookrightarrow \operatorname{Jac}_{F_{\delta}}$$

$$\downarrow^{k}$$

$$C \hookrightarrow \operatorname{Kum}_{F_{\delta}}$$

Intersection:

$$\pi(D_{\delta}(K)) \subset C(\overline{K}) \cap k(\operatorname{Jac}_{F_{\delta}}(K))$$

Prym varieties

Given unramified double cover $\pi:D\to C$:

$$D \qquad \operatorname{Jac}_{D} \longleftarrow \operatorname{Prym}(D/C)$$

$$\pi \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C \qquad \operatorname{Jac}_{C} \qquad 0$$

Definition: $\operatorname{Prym}(D/C)$ is the connected component of $\operatorname{Ker}(\pi_*)$ containing 0.

Properties:

- ullet $\operatorname{Prym}(D/C)$ inherits a principal polarization from Jac_D
- Prym(D/C) is generally *not* a Jacobian
- dim Prym(D/C) = genus(C) 1

Theorem: With $\pi:D_\delta\to C$ as before,

$$Prym(D_{\delta}/C) = Jac_{F_{\delta}}$$

A closer study of ${\cal D}$

Consider the quadratic forms / symmetric matrices:

$$M_{1} = \begin{pmatrix} Q_{1} & & & \\ & & & \\ & & -\delta & 0 \\ & & 0 & 0 \end{pmatrix} M_{2} = \begin{pmatrix} Q_{2} & & & \\ & & & \\ & & & \\ & & & -\frac{1}{2}\delta & 0 \end{pmatrix} M_{3} = \begin{pmatrix} Q_{3} & & & \\ & & & \\ & & & \\ & & & 0 & -\delta \end{pmatrix}$$

Their linear span:

$$\Lambda = \{\lambda_1 M_1 + \lambda_2 M_2 + \lambda_3 M_3\} \simeq \mathbb{P}^2; \ D_{\delta} = \operatorname{Var}(\Lambda)$$

The locus of singular quadrics:

$$\Gamma = \{ M \in \Lambda : \text{rk}(M) \le 4 \} : \det(\lambda_1 M_1 + \lambda_2 M_2 + \lambda_3 M_3) = 0$$

$$\Gamma = \Gamma^+ \qquad \qquad \qquad \Gamma^-$$

$$\det(\lambda_1 Q_1 + \lambda_2 Q_2 + \lambda_3 Q_3) = 0 \qquad 4\lambda_1 \lambda_3 - (\lambda_2)^2 = 0$$

- dim $\Gamma = 1$
- $\{M \in \Lambda : \operatorname{rk}(M) \le 3\} = \operatorname{Sing}(\Gamma)$
- $\{M \in \Gamma^- : \operatorname{rk}(M) \le 3\} = \Gamma^+ \cap \Gamma^-$

Geometry of some special divisors on D

[Arbarello-Cornalba-Griffiths-Harris VI, Excercises F]

Variety of special divisor classes:

$$W_4^1 = \{ \mathfrak{d} \in \operatorname{Pic}^4(D) : l(\mathfrak{d}) \ge 2 \}$$

Residuality:

$$\mathfrak{d}\mapsto [\kappa_D]-\mathfrak{d}:W_4^1\to W_4^1$$

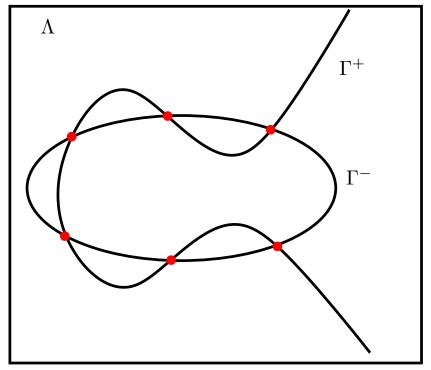
Characterisation: Effective divisors $[\sum_{i=1}^4 P_i] \in W_4^1$ are of the form

$$V \cap D$$
, where $V \subset \mathbb{P}^4$ is a plane.

- If $\deg(V \cap D) = 4$ then $\Lambda|_V$ is a pencil, i.e. $\exists M \in \Lambda : V \subset M$.
- A quadric in \mathbb{P}^4 containing a plane is singular: $W_4^1 \to \Gamma$.
- A quadric $M \subset \mathbb{P}^4$ of rank 4 has two systems of planes (It's a cone over a quadric in \mathbb{P}^3).
- If $V_1, V_2 \subset M$ belong to opposite systems, then $[(V_1 \cap D) + (V_2 \cap D)] = [\kappa_D]$.
- $\bullet \ \ W_4^1 \to \Gamma \text{ is a double cover, with } (\mathfrak{d} \mapsto \kappa_D \mathfrak{d}) \in \operatorname{Aut}(W_4^1/\Gamma).$

Decomposition of W_4^1

We have W_4^1 as a double cover of Γ :



Let F_{δ} be the component of W_4^1 over

$$\Gamma^-: 4\lambda_1\lambda_3=(\lambda_2)^2;$$
 parametrically: $(\lambda_1:\lambda_2:\lambda_3)=(1:2x:x^2)$

For some $\tilde{\delta}$:

$$F_{\delta}: y^2 = -\tilde{\delta} \det(Q_1 + 2x Q_2 + x^2 Q_3)$$

Description of Prym(D/C)

Note: If $V \subset M \in \Gamma^-$ then $\pi(V)$ is a line. Hence, $\pi_*(V \cap D) \in \operatorname{Pic}_C$ is $[\kappa_C]$.

$$\pi_*: F_\delta \to \operatorname{Pic}^4(C)$$
 $\mathfrak{d} \mapsto [\kappa_C]$

Embedding:

It follows that $\pi_*(\operatorname{Jac}_F) = 0$, so

$$\operatorname{Jac}_F \hookrightarrow \operatorname{Prym}(D/C).$$

Since Jac_F is of the right dimension, equality must hold.

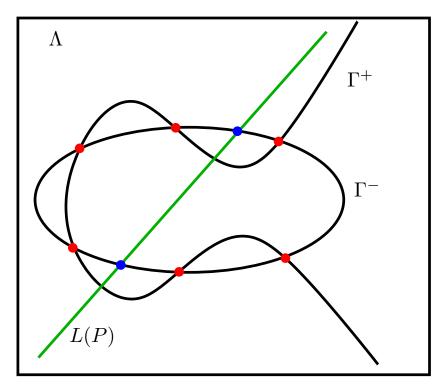
Embedding D in Prym(D/C)

A simple mapping:

$$D \to W_4^1 + W_4^1 \subset \operatorname{Pic}^8(D)$$
$$P \mapsto \sum \{ [\mathfrak{d}] \in F : \mathfrak{d} \ge 2P \}$$

In terms of Λ : Given P:

$$L(P) := \{ M \in \Lambda : T_P(D) \subset M \}$$



Determining $C \subset \operatorname{Kum}_F$

Recall the diagram:

$$D_{\delta} \hookrightarrow \operatorname{Jac}_{F_{\delta}}$$

$$\downarrow k$$

$$C \hookrightarrow \operatorname{Kum}_{F_{\delta}}$$

Computation: Use interpolation.

- ullet Take a quartic point \overline{P} on C (intersect C with a line).
- Lift to an octic point *P* on *D*.
- Map over to Jac_F . ($[p_1+p_2-\kappa_F]$ with p_1,p_2 quadratic is easier here)
- Project down to Kum_F . This gives a quartic point again.
- Interpolate equations for *C*.

Observation: $C \subset \operatorname{Kum}_F$ is cut out by a quartic equation: 35 degrees of freedom.

Application: Chabauty

Consider:

$$C: (-4u^2 - 4vw + 4w^2)(2u^2 + 4uv + 4v^2) = (-2u^2 + 2uw - 4vw + 2w^2)^2$$

We have

$$\bigcup_{\delta \in \{\pm 1, \pm 2, \pm 5, \pm 10\}} \pi(D_{\delta}(\mathbb{Q})) = C(\mathbb{Q}).$$

Local considerations show $D_{\delta}(\mathbb{Q})=\emptyset$ for $\delta\neq 1$. Component of W_4^1 :

$$F: y^2 = x^5 + 8x^4 - 7x^3 - 7/2x^2 + 5x - 1$$

$$\operatorname{Jac}_F(\mathbb{Q}) = \langle \mathfrak{g} \rangle = \langle [(2\sqrt{2} - 2, 17\sqrt{2} - 25) + (-2\sqrt{2} - 2, -17\sqrt{2} - 25) - 2\infty] \rangle$$

$$\text{Kum}_F: \quad 11k_1^4 - 28k_1^3k_2 + 70k_1^3k_3 + 4k_1^3k_4 + 32k_1^2k_2^2 - 164k_1^2k_2k_3 - 10k_1^2k_2k_4 + 171k_1^2k_3^2 + 14k_1^2k_3k_4 + 4k_1k_2^3 - 20k_1k_2^2k_3 + 14k_1k_2k_3^2 + 14k_1k_2k_3k_4 + 14k_1k_3^3 - 32k_1k_3^2k_4 - 4k_1k_3k_4^2 + k_2^2k_4^2 - 2k_2k_3^2k_4 + k_3^4 = 0$$

Equation for $C \subset \operatorname{Kum}_F$:

 $\phi: \quad 429136k_1^4 + 1330784k_1^3k_3 + 567232k_1^3k_4 - 159200k_1^2k_2^2 - 2866016k_1^2k_2k_3 + 33440k_1^2k_2k_4 + 4248768k_1^2k_3^2 + \\ 27552k_1^2k_3k_4 + 881664k_1^2k_4^2 + 288072k_1k_2^3 - 777432k_1k_2^2k_3 - 256928k_1k_2^2k_4 + 244832k_1k_2k_3^2 + \\ 907424k_1k_2k_3k_4 - 745472k_1k_2k_4^2 + 593152k_1k_3^3 - 991488k_1k_3^2k_4 + 357440k_1k_3k_4^2 + 573440k_1k_4^3 + 34895k_2^4 - \\ 69720k_2^3k_3 + 1120k_2^3k_4 + 151704k_2^2k_3^2 - 364448k_2^2k_3k_4 + 226032k_2^2k_4^2 - 251552k_2k_3^3 + 569376k_2k_3^2k_4 + \\ 10752k_2k_3k_4^2 - 315392k_2k_4^3 + 156704k_3^4 - 167552k_3^3k_4 - 283136k_3^2k_4^2 + 200704k_3k_4^3 + 114688k_4^4 = 0$

Application: Chabauty (continued)

If $P \in D_1(\mathbb{Q}) \subset \operatorname{Jac}_F(\mathbb{Q})$, then

$$P = n\mathfrak{g}$$
 for some $n \in \mathbb{Z}$

Base change to \mathbb{F}_{13} : If $k(n\mathfrak{g}) \in C \pmod{13}$ then $n = \pm 1 \pmod{10}$.

13-adically: $\phi(N) = \phi(k((1+10N)\mathfrak{g})) = \phi(k(\mathfrak{g} + \operatorname{Exp}(N\operatorname{Log}(10\mathfrak{g})))).$

$$\phi(N) = \phi_0 + \phi_1 N + \phi_2 N^2 + \dots \in \mathbb{Z}_{13}[N] \text{ with } \nu_{13}(\phi_i) \ge i$$

Observation: $\phi(k(\mathfrak{g})), \phi(k(11\mathfrak{g})) \pmod{13^2}$ determine $\phi_0, \phi_1 \pmod{13^2}$.

Fact: $\phi(k(\mathfrak{g})) = 0$ and $\phi(k(11\mathfrak{g})) \neq 0 \pmod{13^2}$; therefore $\nu_{13}(\phi_1) = 1$.

Theorem (Straßmann): If $f(z)=\sum_n f_n z^n\in \mathbb{Z}_p[\![n]\!]$ is convergent on \mathbb{Z}_p and $\nu_p(f_N)<\nu_p(f_n)$ for all n>N then

$$\#\{z \in \mathbb{Z}_p : f(z) = 0\} \le N.$$

Corollary: $D_1(\mathbb{Q}) = \{\mathfrak{g}, -\mathfrak{g}\}$ and $C(\mathbb{Q}) = \{(0:1:0)\}.$

Other application

Consider the everywhere locally soluble curve

$$C: (v^2 + vw - w^2)(uv + w^2) = (u^2 - v^2 - w^2)^2.$$

We have

$$\bigcup_{\delta \in \{\pm 1, \pm 2\}} \pi(D_{\delta}(\mathbb{Q})) = C(\mathbb{Q})$$

and only D_1 is everywhere locally soluble.

We have

$$F: y^2 = x^6 + 2x^5 + 15x^4 + 40x^3 - 10x$$

and

$$\operatorname{Jac}_F(\mathbb{Q}) = \langle \mathfrak{g}_1, \mathfrak{g}_2 \rangle = \langle [\infty^+ - \infty^-], [((4\sqrt{41} - 41)/205, \ldots) + \cdots] \rangle$$

Using congruence information

We find

p	$\operatorname{Jac}_F(\mathbb{Q})$	\pmod{p}	relations
7	$\mathbb{Z}/55\mathbb{Z}$		$55\mathfrak{g}_1 \equiv 0, \ \mathfrak{g}_2 \equiv 15\mathfrak{g}_1$
11	$\mathbb{Z}/93\mathbb{Z}$		$93\mathfrak{g}_1 \equiv 0, \ \mathfrak{g}_2 \equiv 47\mathfrak{g}_1$

Intersecting $C(\mathbb{F}_p)$ with $k(\operatorname{Jac}_F(\mathbb{Q}) \pmod p)$:

$$D(\mathbb{Q}) \subset \{\pm 9\mathfrak{g}_1, \pm 22\mathfrak{g}_1, \pm 23\mathfrak{g}_1\} + \langle 55\mathfrak{g}_1, \mathfrak{g}_2 - 15\mathfrak{g}_1 \rangle$$

$$D(\mathbb{Q}) \subset \{\pm 33\mathfrak{g}_1\} + \langle 93\mathfrak{g}_1, \mathfrak{g}_2 + 46\mathfrak{g}_1 \rangle$$

Deeper information at 11: gives $11 \cdot 2$ congruence classes modulo:

$$\langle 11 \cdot 93\mathfrak{g}_1, 11 \cdot (\mathfrak{g}_2 + 46\mathfrak{g}_1) \rangle$$

Intersection:

$$\langle 55\mathfrak{g}_1,\mathfrak{g}_2-15\mathfrak{g}_1,11\cdot 93\mathfrak{g}_1,11\cdot (\mathfrak{g}_2+46\mathfrak{g}_1)\rangle=\langle 11\mathfrak{g}_1,\mathfrak{g}_2-4\mathfrak{g}_1\rangle$$

Combining the information:

Corollary: $D(\mathbb{Q}) = \emptyset$ and hence $C(\mathbb{Q}) = \emptyset$.

Empirical observation for small numbers

Observation: The relevant twists of Jac_F tend to have high rank:

Take quadratic forms $Q_1,Q_2,Q_3\in\mathbb{Q}[u,v,w]$ and $(u_0:v_0:w_0)\in\mathbb{P}^2(\mathbb{Q})$ such that $Q_1Q_3-Q_2^2=0$ is a smooth plane quartic containing $(u_0:v_0:w_0)$ and such that $Q_1(u_0,v_0,w_0)$ and $Q_2(u_0,v_0,w_0)$ are squares, then

$$y^2 = -\det(Q_1 + 2xQ_2 + x^2Q_3)$$

has a Jacobian with rank probably at least 2.

The other way around

Debunking:

- Take $\operatorname{Jac}_F(\mathbb{Q})$ of rank 1.
- Take $\mathfrak{g} \in \operatorname{Jac}_F(\mathbb{Q})$.
- Choose a plane $V\subset \mathbb{P}^3$ through $k(\mathfrak{g})$. Generically, $C:=V\cap \mathrm{Kum}_F$ is a smooth plane quartic.
- Write $C: Q_1Q_3=Q_2^2$ (using $\mathrm{Jac}_F/\mathrm{Kum}_F$)
- ullet Obtain new embedding $\iota:C o \operatorname{Kum}_F$ via method sketched before.
- We find: $\iota(k(\mathfrak{g})) = k(2\mathfrak{g})$.

Some corollaries

Any square-free sextic or quintic polynomial is of the form

$$\det(Q_1 + 2xQ_2 + x^2Q_3)$$

- ullet Any genus-2 Jacobian Jac_F over K occurs as a Prym over K
- \bullet Over \overline{K} , the fibre of $(D,C)\mapsto {\rm Prym}(D/C)$ of ${\rm Jac}_F$ is given by the plane sections of ${\rm Kum}_F$
- \bullet Over K, this is not the case: Quartic sections do the trick