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Overview

Non-hyperelliptic curves of genus 3 and their unramified double covers

Some special divisors on curves of genus 5

Prym varieties for genus 3

Embedding a double cover in its Prym

Application: Avoiding Chabauty on a curve of genus 3

Application: Violation of the Hasse-principle in genus 3 and 5

A word of warning: Don't believe small numbers



Curves of genus 3
Notation: Let A be a number field
Non-hyperelliptic curve of genus 3:  Smooth plane quartic

Special form: Quadratic in quadratics in P2

C: Qo(Q1(u, v, w), Qa(u,v,w), Q3(u,v,w)) =0

where 1, 2, Q3 € K|u, v, w| are quadratic forms and Qg € K|q1, ¢2, 3] is too.
Further reduction:  If Qy(q1, g2, g3) = 0 has no solutions, then C(K') = ().

If it has, then (up to linear transformation) ()g = q1q3 — q%.

We limit attention to curves of the form

C': Q1(u, v, w)Q3(u, v, w) = Qa(u, v, w)?

Note: Any smooth plane quartic can be written in this form over an extension of /.



Unramified double covers

Given a genus 3 curve

C': Q1(u, v, w)Q3(u, v, w) = Qa(u, v, w)*

Consider the following projective curve in Pt

Qi(u,v,w) = 677
Ds: < Qou,v,w) = 0rs
Qs(u,v,w) = 45

and the unramified double cover:

T D — C
(w:v:w:r:s) — (u:v:w).

with the obvious o € Aut(D/C') defined by
o:(u:viw:ir:s)— (u:v:w:—r:—s).

The curve D is smooth and of genus 5.

The given model is canonical.



Covering collection (J.L. Wetherell)

Obviously,
7T<D5<K>) C C(K)

Conversely, there is a finite subset A C K™ such that

| #(Ds(K)) = C(K)
0EA
Sketch: For K = Q:

e assume (1, Q2, Q3 € Z[u, v, w)|
o if P=(up:vp:wp)€E IP)2<@> such that Q1(P)Q3(P) = Q2<P)2,
WLOG: up,vp,wp € Z and ged(up,vp,wp) = 1

e it follows

ged(Q1(P), Q2(P), Q3(P)) | R = resy(resy(Q1, Q2),1esy(Q1, @3))
e Hence, if Q1(P) = 57“%3, Qs3(P) = (53%, then
5| R



Description of the Jacobian of a curve of genus 2 (Cassels-Flynn)

Consider:

F .y’ =fo+ fiz+ for” + - + fea®

Canonical divisor class:

wr] = [(0,y0) + (z0, —y0)]
General point of Jacp(K):

g = l(z1,y1) + (¥2,92) — Kkp|, where (z1,41), (22, 12) € F(K).
Kummer surface: Kumpg := Jacp/(—1)
klg)= (k1 :ko:ks:ky)=(1:21+x0: 2720 ...)

Equation of Kumy as a variety over K:

Kump : (k3 — dkiks) kT + (. ) ks+(..) =0



Embedding D in an abelian surface

Notation: We write (); for

e The quadratic form Q; € Kl|u, v, w]

e The symmetric matrix Q; € K3%3.

A curve of genus 2:

Fys : y2 = —ddet(Q + 22Q9 + :132@3)

Main tool:
Dy ————Jacp,
™ lk
C ——Kump,
Intersection:

m(Ds(K)) c C(K)N k(Jacp(K))



Prym varieties

Given unramified double cover 7 : D — ("

D Jacp<—>Prym(D/C)

wl | l
C Jaco 0

Definition: Prym(D /C') is the connected component of Ker () containing 0.

Properties:
e Prym(D/C) inherits a principal polarization from Jacp
e Prym(D/C') is generally not a Jacobian
e dim Prym(D/C) = genus(C) — 1

Theorem: With 7w : D5 — (' as before,
Prym(D;/C) = Jacp,



A closer study of D

Consider the quadratic forms / symmetric matrices:

o
My =

Their linear span:

A = {\ M| + MMy + AgM3} ~ P Dy = Var(A)

Q:
My =

The locus of singular quadrics:

[ = {MeA:rk(M)<4)}

F:

det(A Q1 + M@ + A3Q3) = 0

e diml' =1

[ U

o {M e A:rk(M) <3} ==Sing(l)
e (M el :tk(M)<3}=T"TNI"

Qs

AMA3 — (A)? =0

det(A; M7 + AoMsy + A\3M3) =0




Geometry of some special divisorson D
[Arbarello-Cornalba-Griffiths-Harris VI, Excercises F]

Variety of special divisor classes:

W} ={o e Pich(D) : 1(d) > 2}
Residuality:
0= [kp] —0: Wi — W}
Characterisation: Effective divisors [Zle P;) € W} are of the form

VN D, whereV C Ptis a plane.

o Ifdeg(V N D) =4then Al isapencil,ie. M € A: V C M.
e A quadric in Pt containing a plane is singular: I/V41 — I

e A quadric M C P* of rank 4 has two systems of planes (It's a cone over a
quadric in IPS).

e If V1, V5 C M belong to opposite systems, then [(ViND)+(VoND)| = |kp].
o W} — I'is adouble cover, with (0 — kp — ) € Aut(W}/T).
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Decomposition of W41

We have VV41 as a double cover of I

A

Let I'5 be the component of W41 over
[ 4\ A3 = (\o)?; parametrically: (A : A9 : A3) = (1: 2z : z°)
For some 0

Fys : y2 S det(Qq + 2x Q9 + xQQg)



Description of Prym(D/C')

Note: If V. C M € I'" then w(V)is aline. Hence, m«(V N D) € Pice is [kel.

T Fs — Pic}(0)
0 — [k
Embedding :

Jacp — Jacp
p1+p2—kp] — p1+p2—[kp]

It follows that 7« (Jacy) = 0, so
Jacp — Prym(D/C).

Since Jacp is of the right dimension, equality must hold.
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Embedding D in Prym(D/C)

A simple mapping:
D — W]+ W} cCPic®(D)
P — Y A{Pp]e F:0>2P}

In terms of A: Given P:

L(P) ={M e \N:Tp(D)C M}
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Determining C' C Kump

Recall the diagram:

D5 C—>J&CF5
Wl lk
C ———Rkump,

Computation: Use interpolation.

e Take a quartic point P on C (intersect C with a line).

e Lift to an octic point P on D.

e Map overto Jacg. ([p; + p2 — K| with py, po quadratic is easier here)
e Project down to Kumg. This gives a quartic point again.

e Interpolate equations for C.

Observation: C C Kum is cut out by a quartic equation: 35 degrees of freedom.
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Application: Chabauty

Consider:
C (=4’ — dvw + 4uw?) (2u® + duv + 40?) = (=2u® + 2uw — dvw + 2w?)°?
We have

g 7(Ds(Q)) = C(Q).

se{£1,42,45 410}
Local considerations show Ds(Q) = () for § # 1. Component of W41:
Fy? =2 +8z" —7a —7/22° + 52 — 1
Jacp(Q) = (g) = ([(2V2 —2,17TV2 — 25) 4+ (—2v/2 — 2, —17/2 — 25) — 200])

Kump © 11k — 28k%ky + T0K3k; + 4k%ky + 32K2K2 — 164k2koks — 10k2koky + 171R2K2+
14]6%]{73]{74 + 4]‘61]{3 — 20]{71]{7%]{3 + 14/€1/€2/€§ + 14k koksks + 14k1/€§’ — 32]{71]{7§]{T4—
4]431]63]@% + k’%]@% — 2k2k§k4 + k§ =0

Equation for C' C Kumg:

¢ 429136k] + 1330784k ks + 567232k3ky — 159200k k3 — 2866016k2 koks + 33440kTkoky + 4248768k k3+
27552k k3ky + 881664k7kT + 288072k ks — 777432k k3ks — 256928k k3ky + 244832k kok3+
907424k; kokgky — 745472k kok? + 593152k k3 — 991488k k3ky + 357440k, kzk3 + 573440k k3 + 34895k3 —
69720k3 k3 + 1120k3ky + 151704k3k3 — 364448k3ksky + 226032k3k3 — 251552kok3 + 569376kok3ky+
10752koksk? — 315392kok3 + 156704k; — 167552k3k, — 283136k3k3 + 200704k3k; + 114688k] = 0
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Application: Chabauty (continued)

If P € D1(Q) C Jacp(Q), then

P = ng for somen € Z

Base change to Fi3: If k(ng) € C' (mod 13) thenn = +1 (mod 10).

13-adically: ¢(N) = ¢(k((1 + 10N)g)) = ¢(k(g + Exp(NLog(10g)))).
S(N) = ¢g + ¢1N + paN* + - - - € Zy3[N] with v13(¢p;) > i
Observation: ¢(k(g)), ¢(k(11g)) (mod 13?) determine ¢y, ¢1 (mod 132).

Fact: ¢(k(g)) = 0and ¢(k(11g)) # 0 (mod 13%); therefore v13(¢) = 1.

Theorem (StraBmann): If f(z) = >, fn2" € Zp|n] is convergent on Z,; and
vp(fn) < vp(fpn) foralln > N then

#{z€Zy: f(z) =0} <N.

Corollary: D1(Q) ={g,—g}and C(Q) ={(0:1:0)}.
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Other application

Consider the everywhere locally soluble curve
C: (0° +ow — w)(uv + w?) = (u? — v° — w?)?.
We have

) #(Ds(Q) =C(Q)

de{£1,£2}

and only D1 is everywhere locally soluble.

We have
Fy? =2+ 22° + 152% + 4027 — 102

and

Jacp(Q) = (g1, g92) = ([oo™ — 007, [(4V41 — 41)/205,...) + - - -
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Using congruence information

We find
p |Jacp(Q) (mod p) | relations
7 | Z/55Z 55g1 = 0, go = 15g
11| Z/93Z 93g1 = 0, go = 4741

Intersecting C'(F;) with k(Jacr(Q) (mod p)):

D(Q) C {=£9g1,£22g1,+23g1} + (55g1,82 — 1591)
D(Q) C {£33g:1} + (9391, go + 46g;)

Deeper information at 11: gives 11 - 2 congruence classes modulo:
(11 - 93g1, 11 - (g2 + 4691))

Intersection:

(55g1, g2 — 15g1, 11 - 93g1, 11 - (g2 + 46g1)) = (1191, g2 — 4g1)

Combining the information:

from7 : D(@Q) C {0,£g1,£2g} + (llg1, 92 —4g1)
from11° : D(Q) C {+4g;} + (1lgy, 92 — 4g1)

Corollary: D(Q) = () and hence C'(Q) = 0.
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Empirical observation for small numbers
Observation: The relevant twists of Jacy tend to have high rank:

Take quadratic forms Q1, Q2, Q3 € Qlu, v, w] and (ug : vy : wy) € P?(Q) such
that Q103 — Q% = () is a smooth plane quartic containing (ug : vg : wg) and such
that Q1 (ug, vy, wo) and Qo(ug, vy, wp) are squares, then

y* = —det(Qq + 22Q9 + 1°Q3)

has a Jacobian with rank probably at least 2.
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The other way around

Debunking:
e Take Jacp(Q) of rank 1.
e Take g € Jacp(Q).

e Choose a plane V' C P through k(g). Generically, C' := V N Kumy is a
smooth plane quartic.

o Write C': Q103 = Q% (using Jac g /Kum )
e Obtain new embedding ¢ : ' — Kum g via method sketched before.

e We find: t(k(g)) = k(2g).
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Some corollaries

Any square-free sextic or quintic polynomial is of the form

det(Q + 2xQ9 + xQQg)

Any genus-2 Jacobian Jac g over K occurs as a Prym over K

Over K, the fibre of (D, C) — Prym(D/C) of Jacp is given by the plane

sections of Kum g

Over K, this is not the case: Quartic sections do the trick
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