Khintchin [15] derived a remarkable theorem with which we could show the common Lyapunov exponent of almost all (in the sense of Lebesgue measure) orbits is . Easier ways have since been found to establish this result, using ergodic theory. We summarize the ergodic results in the next section. Note that for any rational initial point, the above limit does not exist (because is eventually 0 and the derivative blows up there). Further, for any periodic orbit the calculation can be made explicitly, to give Lyapunov exponents that differ from the almost-everywhere value.
For example, the fixed points have Lyapunov exponents
so there are orbits with arbitrarily large Lyapunov exponents, i.e., orbits that are arbitrarily sensitive to perturbations in the initial point. The asymptotic formula above was derived from the explicit form for obtained by solving for its positive root, and then using Maple'sasympt
command.
It is not too hard to show, because the limit can be written down
explicitly, that for the orbit of e, the
limit defining the Lyapunov exponent is infinite.
On the other end of the scale, the
special case N=1 of gives , the golden ratio. Thus , which is smaller than the almost-everywhere
Lyapunov exponent. In fact, we have the following:
No orbit of the Gauss map has a Lyapunov exponent smaller than .