next up previous
Next: About this document ... Up: Applications of Integer Relation Previous: Acknowledgment

Bibliography

1
G. Almkvist, A. Granville, Borwein and Bradley's Apéry-like formulae for $\zeta(4n+3)$. Experiment. Math., submitted.

2
D. Bailey, Numerical results on the transcendence of constants involving pi, e, and Euler's constant. Math. Comp. 50 (1988), 275-281.

3
D. Bailey, P. Borwein, S. Plouffe, On the rapid computation of various polylogarithmic constants. Math. Comp. 66 (1997), 903-913.

4
D. H. Bailey, H. R. P. Ferguson, Numerical results on relations between numerical constants using a new algorithm. Math. Comp. 53 (1989), 649-656.

5
D. H. Bailey, S. Plouffe, Recognizing Numerical Constants. In: The Organic Mathematics Project Proceedings, http://wayback.cecm.sfu.ca/organics, April 12, 1996. Hardcopy version, Canadian Mathematical Society Conference Proceedings, 20 (1997), 73-88.

6
F. Bellard, The pi challenge. (Public announce, September 1997)
http://www-stud.enst.fr/~bellard/pi-challenge/

7
J. M. Borwein, P. B. Borwein, Pi and the AGM. John Wiley & Sons, New York, 1987.

8
J. M. Borwein, P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer. Math. Soc. 323 (1991), 691-701.

9
J. M. Borwein, P. B. Borwein, F. G. Garvan, Some cubic identities of Ramanujan. Trans. Amer. Math. Soc. 343 (1994), 35-47.

10
J. Borwein, D. Bradley, Empirically determined Apéry-like formulae for zeta(4n+3). Experiment. Math. 6 (1997), 181-194.

11
J. Borwein, D. Bradley, Searching symbolically for Apéry-like formulae for values of the Riemann zeta function. SIGSAM Bulletin Communications in Computer Algebra 30 (Issue 116, June 1996), 2-7.

12
J. M. Borwein, D. M. Bradley, D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k. The Wilf Festschrift. Electron. J. Combin. 4 (1997), no. 2, R5, 21 pp.

13
J. Borwein, D. M. Bradley, D. J. Broadhurst, P. Lisonek, Special values of multidimensional polylogarithms, submitted.

14
J. Borwein, D. M. Bradley, D. J. Broadhurst, P. Lisonek, Combinatorial aspects of Euler sums. Electron. J. Combin. 5 (1998), no. 1, R38, 12 pp.

15
P. Borwein, C. Ingalls, The Prouhet-Tarry-Escott Problem revisited. Enseign. Math. 40 (1994), 3-27.

16
D. Bradley, A class of series acceleration formulae for Catalan's constant. The Ramanujan Journal, in print.

17
David J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, to appear in J. Math. Phys.

18
David J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$. Preprint, January 1998.

19
David J. Broadhurst, J. A. Gracey, D. Kreimer, Beyond the triangle and uniqueness relations; non-zeta terms at large N from positive knots, Zeit. Phys. C75 (1997), pp. 559-574.

20
David J. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B Vol. 393, 1997, pp. 403-412.

21
David J. Broadhurst, D. Kreimer, Knots and numbers in $\phi^4$ theory to 7 loops and beyond, Int. J. Mod. Phys. C6 (1995), pp. 519-524.

22
T. Q. T. Le, J. Murakami, Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl. Vol. 62, 1995, pp. 193-206.

23
H. H. Chan, W. C. Liaw, On Russell-type modular equations. Canad. J. Math., submitted.

24
H. R. P. Ferguson, D. H. Bailey, A polynomial time, numerically stable integer relation algorithm. RNR Technical Report RNR-91-032, NASA Ames Research Center, Moffett Field, CA. December 1991.

25
H. R. P. Ferguson, D. H. Bailey, S. Arno, Analysis of PSLQ, an integer relation finding algorithm. NAS Technical Report NAS-96-005, NASA Ames Research Center, Moffett Field, CA. April 1996. Math. Comp., in print.

26
H. R. P. Ferguson, R. W. Forcade, Mulidimensional Euclidean algorithms. J. Reine Angew. Math. 334 (1982), 171-181.

27
A. Gloden, Mehrgradige Gleichungen. P. Noordhoff, Groningen, 1944.

28
G. H. Hardy, Ramanujan. Chelsea, New York, 1940.

29
J. Håstad, B. Just, J. C. Lagarias, C. P. Schnorr, Polynomial time algorithms for finding integer relations among real numbers. SIAM J. Comput. 18 (1989), 859-881.

30
M. Koecher, Letter to the editor. Math. Intelligencer 2 (1980), 62-64.

31
K. S. Kölbig, Explicit evaluation of certain definite integrals involving powers of logarithms. J. Symb. Computation 1 (1985), 109-114.

32
A. K. Lenstra, H. W. Lenstra Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 515-534.

33
N. Magot, A. Zvonkin, Belyi functions for Archimedean solids. In: Conference Proceedings, Formal Power Series and Algebraic Combinatorics, Vienna, July 1997, Volume 3, 373-389.

34
H. N. Minh, M. Petitot, Mots de Lyndon : générateurs de relations entre les polylogarithmes de Nielsen. In: Conference Proceedings, Formal Power Series and Algebraic Combinatorics, Vienna, July 1997, Volume 3, 418-429.

35
C. Percival, PiHex: a distributed project to calculate pi. August 1998. http://wayback.cecm.sfu.ca/projects/pihex/pihex.html

36
B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms. J. Number Theory 26 (1987), 325-367.

37
D. Zagier, Values of zeta functions and their applications. First European Congress of Mathematics, Volume II, Birkhäuser, Boston, 1994, pp. 497-512.



Agnes Szanto
2000-05-10