Nils Bruin
Department of Mathematics
Simon Fraser University
mail address:
Nils Bruin
Department of Mathematics
Simon Fraser University
Burnaby, BC
CANADA V5A 1S6

t: (778) 782 3794
f: (778) 782 4947
e: nbruin@sfu.ca
pgp: public key

office: SC K 10507

topics:
Home
Teaching
Publications
Research subjects
Previous track
Software
Workshops

Publications

  1. Nils Bruin, E.Victor Flynn, Damiano Testa, Descent via (3,3)-isogeny on Jacobians of genus 2 curves, ArXiv preprint 1401.0580,2013.
  2. Nils Bruin, Success and challenges in determining the rational points on curves, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, The Open Book Series 1-1 (2013), 187-212.
  3. Nils Bruin, Brett Hemenway, On congruent primes and class numbers of imaginary quadratic fields, Acta Arithmetica 159 (2013), 63-87. (or see ArXiv preprint arXiv:1110.5959, 2011).
  4. Nils Bruin, Bjorn Poonen, Michael Stoll, Generalized explicit descent and its application to curves of genus 3, ArXiv preprint arXiv:1205.4456, 2012.
  5. Nils Bruin, Alexander Molnar, Minimal models for rational functions in a dynamical setting, LMS Journal of Computation and Mathematics, 15 (2012), 400-417. See also Electronic Resources (or see ArXiv preprint arXiv:1204.4967, 2012).
  6. Jason P. Bell, Nils Bruin, Michael Coons, Transcendence of generating functions whose coefficients are multiplicative, Trans. Amer. Math. Soc. 364 (2012), 933-959 (or see ArXiv preprint arXiv:1003.2221, 2010).
  7. Nils Bruin, Kevin Doerksen, The arithmetic of genus two curves with (4,4)-split Jacobians, Canad. J. Math. 63 (2011), 992-1021. See also Electronic Resources (or see ArXiv preprint arXiv:0902.3480, 2009).
  8. Nils Bruin, Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS Journal of Computation and Mathematics 13 (2010), 272-306. (or see ArXiv preprint arXiv:0906.1934, 2009).
  9. Nils Bruin, Sander R. Dahmen, Visualizing elements of Sha[3] in genus 2 jacobians, Algorithmic Number Theory, 9th International Symposium, ANTS-IX, Lecture Notes in Computer Science 6197, Springer 2010, pp. 110 - 125, (ArXiv preprint arXiv:1001.5302, 2010.)
  10. Nils Bruin, Michael Stoll, Two-cover descent on hyperelliptic Curves, Math. Comp. 78 (2009), 2347-2370. See also Electronic Resources. (or see ArXiv preprint arXiv:0803.2052, 2008)
  11. Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), no. 2, 181-189. See Electronic data for additional resources. (or see arXiv preprint, 2006).
  12. Nils Bruin, The arithmetic of Prym varieties in genus 3, Compositio Mathematica (2008), 144 : 317-338. See Electronic Data for supporting electronic resources. (or see arXiv preprint, 2004).
  13. Bright, M. J.; Bruin, N.; Flynn, E. V.; Logan, A. The Brauer-Manin obstruction and Sha[2], LMS J. Comput. Math. 10 (2007), 354--377. Electronic resources available in Appendix A or here.
  14. Nils Bruin, Julio Fernández, Josep González, Joan-Carles Lario, Rational points on twists of X0(63), Acta Arith. 126 (2007), no. 4, 361-385. Also available as Preprint at Universitat Politecnica Catalunya.
  15. Nils Bruin, K. Györy, L. Hajdu, Sz. Tengely, Arithmetic progressions consisting of unlike powers, Indag. Mathem. 17 (4), 539-555 (2006). Also available as preprint.
  16. Nils Bruin, E. Victor Flynn, Josep González, Victor Rotger, On finiteness conjectures for endomorphism algebras of abelian surfaces , Math. Proc. Camb. Phil. Soc. (2006) 141, 383-408. (or see arXiv preprint). See Electronic Data for supporting electronic resources.
  17. Michael A. Bennett, Nils Bruin, Kálmán Györy, Lajos Hajdu, Powers from Products of Consecutive Terms in Arithmetic Progression, Proc. London Math. Soc. (3) 92 (2006), no. 2, 273 - 306.
  18. Nils Bruin, E. Victor Flynn, Exhibiting Sha[2] on Hyperelliptic Jacobians, Journal of Number Theory, 118 (2006), pp. 266-291.
  19. Nils Bruin, The primitive solutions to x^3+y^9=z^2, Journal of Number Theory, 111 (2005), pp. 179-189. (Or see arXiv preprint, 2003). See Transcript of computations for supporting electronic resources.
  20. Nils Bruin and E. Victor Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 4329-4347. (or see Towers of 2-covers of hyperelliptic curves, Preprint PIMS-01-12, 2001)
  21. Nils Bruin and E. Victor Flynn, Rational Divisors in Rational Divisor Classes, in Duncan Buell (Ed.): Algorithmic Number Theory, 6th International Symposium, ANTS-VI, Lecture Notes in Computer Science 3076 Springer 2004, pp. 132 - 139.
  22. Nils Bruin, Visualisation of Sha[2] in Abelian Surfaces, Math. Comp. 73 (2004), no. 247, 1459 - 1476. See Electronic Data for supporting electronic resources.(or see arXiv preprint, 2002).
  23. Nils Bruin, Some ternary Diophantine equations of signature (n,n,2), in Discovering Mathematics with Magma, W. Bosma, J. Cannon (eds). Algorithms Comput. Math., 19, Springer, Berlin, 2006, pp. 63-91. See Electronic Data for supporting electronic resources.
  24. Nils Bruin, Chabauty methods using elliptic curves. J. Reine Angew. Math. 562 (2003), 27 - 49.
  25. N.R. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract 133, 77 pages, 2002.
  26. Nils Bruin and Noam D. Elkies, Trinomials ax^7+bx+c and ax^8+bx+c with Galois Groups of Order 168 and 8*168, in Claus Fieker, David R. Kohel (Eds.): Algorithmic Number Theory, 5th International Symposium, ANTS-V, Lecture Notes in Computer Science 2369 Springer 2002, pp. 172 - 188.
  27. Nils Bruin and E. Victor Flynn, N-Covers of hyperelliptic curves, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 397--405.
  28. Nils Bruin, On powers as sums of two cubes, in Wieb Bosma (ed.),Algorithmic Number Theory 4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000 Proceedings. Springer LNCS 1838. Associated files: prf335.g, tor334.mpl, prf335.mpl.
  29. Nils Bruin, Chabauty methods and covering techniques applied to generalised Fermat equations, PhD-thesis, University of Leiden, 1999. errata. Also the accompanying stellingen (in dutch).
  30. Nils Bruin, The diophantine equations x^2+-y^4=+-z^6 and x^2+y^8=z^3, Compositio Math. 118 (1999) 305-321. Associated files
  31. H.J. Broersma, N. Bruin, J.L. Hurink, L.E. Meester, S.S. op de Beek, J.H. Westhuis, Throughput of ADSL modems, in Proceedings of the 33rd European Study Group with Industry, Syllabus 46: 11-26, CWI, Amsterdam (1999).
  32. Nils Bruin, Generalization of the ABC-conjecture, Master Thesis, Leiden University, 1995

Student Theses

  1. Steven Kieffer, Computability in principle and in practice in algebraic number theory: Hensel to Zassenhaus, M.Sc., Spring 2012.
  2. Alexander Molnar, Fractional linear minimal models of rational functions, M.Sc., Fall 2011. errata
  3. Kevin Doerksen, On the arithmetic of genus 2 curves with (4,4)-split Jacobians, Ph.D., Summer 2011.
  4. Brett Hemenway, On recognizing congruent primes, M.Sc., Fall 2006.
Valid XHTML 1.0 Strict Valid CSS!